19.命題“對(duì)任意x∈R,都有x2≥ln2”的否定為(  )
A.對(duì)任意x∈R,都有x2<ln2B.不存在x0=R,使得 ${{x}_{0}}^{2}$<ln2
C.存在x0=R,使得  ${{x}_{0}}^{2}$≥ln2D.存在x0=R,使得  ${{x}_{0}}^{2}$≤ln2

分析 利用全稱命題的否定是特稱命題,寫(xiě)出結(jié)果即可.

解答 解:因?yàn)槿Q命題的否定是特稱命題,所以:命題“對(duì)任意x∈R,都有x2≥ln2”的否定為:存在x0=R,使得  ${{x}_{0}}^{2}$≤ln2.
故選:D.

點(diǎn)評(píng) 本題考查命題的否定,全稱命題與特稱命題的關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)隨機(jī)變量X的分布函數(shù)為F(x)=$\left\{\begin{array}{l}{0,x<10}\\{1-\frac{10}{x},x≥10}\end{array}\right.$,用Y表示對(duì)X的3次獨(dú)立重復(fù)觀察中事件{X>20}出現(xiàn)的次數(shù),則P{Y>1}=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=|x+2|+|x|
(1)解不等式f(x)≤4;
(2)若對(duì)?x∈R,恒有f(x)>|3a-1|成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在研究某種藥物對(duì)“H1N1”病毒的治療效果時(shí)進(jìn)行動(dòng)物試驗(yàn),得到以下數(shù)據(jù):對(duì)一組150只動(dòng)物服用藥物,其中132只動(dòng)物存活,18只動(dòng)物死亡;對(duì)另一組150只動(dòng)物進(jìn)行常規(guī)治療,其中114只動(dòng)物存活,36只動(dòng)物死亡.
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2列聯(lián)表.
(2)試問(wèn)是否在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為該種藥對(duì)治療“H1N1”病毒有效?
附:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.150.100.050.0250.010.001
k02.0722.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知向量$\overrightarrow{a}$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{OA}$=$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{OB}$=$\overrightarrow{a}$+$\overrightarrow$,若△OAB是等邊三角形,則△OAB的面積為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知向量$\overrightarrow{{e}_{1}}$=(cosxπ,sinxπ),$\overrightarrow{{e}_{2}}$=(sinxπ,cosxπ)(x∈R)可作為平面向量的一組基底,則x不可能的是( 。
A.$\frac{1}{3}$B.1C.$\frac{5}{4}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.(1)求曲線y=ln(2x-1)上的點(diǎn)到直線2x-y+3=0的最短距離.
(2)設(shè)命題P:復(fù)數(shù)z=($\frac{1-i}{1+i}$)2-a(1-2i)+i對(duì)應(yīng)的點(diǎn)在第二象限;命題q:不等式|a-1|≥sinx對(duì)于x∈R恒成立;如果“p且q”為假命題,“p或q”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若一動(dòng)直線x=a與函數(shù)$f(x)=2{cos^2}(\frac{π}{4}+x)$,g(x)=$\sqrt{3}$cos2x的圖象分別交于MN兩點(diǎn),則|MN|的最大值是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(1)求函數(shù)f(x)=3•4x-2x在[0,+∞)上的值域.
(2)求函數(shù)f(x)=sinx+cos2x在R上的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案