4.對(duì)于任意一個(gè)非零復(fù)數(shù)α,定義Ma={ω|ω=α2n-1,n∈N+}.
(1)若集合M中只有三個(gè)元素,試寫(xiě)出滿(mǎn)足條件的一個(gè)α,并說(shuō)明理由;
(2)設(shè)α是方程x+$\frac{1}{x}$=$\sqrt{2}$的一個(gè)根,試用列舉法表示集合M.

分析 (1)定義Mα={ω|ω=α2n-1,n∈N+},且集合M中只有三個(gè)元素,可得α=α7,α≠0,即α6=1,解出即可得出.
(2)由x+$\frac{1}{x}$=$\sqrt{2}$,化為:x2-$\sqrt{2}$x+1=0,利用求根公式解得x,即可得出M.

解答 解:(1)∵定義Mα={ω|ω=α2n-1,n∈N+},且集合M中只有三個(gè)元素,
∴α=α7,α≠0,
∴α6=1,
取α=$cos\frac{π}{3}+isin\frac{π}{3}$=$\frac{1}{2}+\frac{\sqrt{3}}{2}i$.
∴Mα={$\frac{1}{2}+\frac{\sqrt{3}}{2}i$,-1,$\frac{1}{2}-\frac{\sqrt{3}}{2}i$}.
(2)由x+$\frac{1}{x}$=$\sqrt{2}$,化為:x2-$\sqrt{2}$x+1=0,解得x=$\frac{\sqrt{2}±\sqrt{2}i}{2}$,∴M=$\{\frac{\sqrt{2}+\sqrt{2}i}{2},\frac{\sqrt{2}-\sqrt{2}i}{2}\}$.

點(diǎn)評(píng) 本題考查了集合的運(yùn)算性質(zhì)、新定義、復(fù)數(shù)的運(yùn)算性質(zhì)、一元二次方程的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知$sinα=\frac{{2\sqrt{5}}}{5},tan(α+β)=\frac{1}{7},α∈(\frac{π}{2},π)$,那么tanβ的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若向量$\overrightarrow{a}$⊥$\overrightarrow$,則一定有(  )
A.|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|B.|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$|C.|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|D.|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在等差數(shù)列{an}中,已知a6=12,a18=36,求通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.畫(huà)出函數(shù)y=|2x-1|,y=1g|x+1|的大致圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在四邊形ABCD中,已知AB=9,BC=6,$\overrightarrow{CP}$=2$\overrightarrow{PD}$.
(1)若四邊形ABCD是平行四邊形,且$\overrightarrow{AP}$•$\overrightarrow{BP}$=18,求證:四邊形ABCD是矩形;
(2)若$\overrightarrow{AB}$與$\overrightarrow{AD}$夾角的余弦值為$\frac{1}{3}$,且$\overrightarrow{AP}$•$\overrightarrow{BP}$∈[5,10],用反證法證明:四邊形ABCD不可能是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知向量$\overrightarrow{a}$=(x,y),$\overrightarrow$=(3,-1),設(shè)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=$\overrightarrow{a}$$•\overrightarrow$的最大值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)$f(x)=2{sin^2}(x+\frac{π}{4})$,則下列結(jié)論正確的是( 。
A.f(x)是奇函數(shù)B.x=$-\frac{π}{4}$是f(x)一條對(duì)稱(chēng)軸
C.f(x)的最小正周期為$\frac{π}{2}$D.($-\frac{π}{4}$,0)是f(x)的一條對(duì)稱(chēng)軸

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在五面體ABCDEF中,四邊形ABCD為菱形,且∠BAD=60°,對(duì)角線AC與BD相交于O;OF⊥平面ABCD,BC=CE=DE=2EF=2.
(Ⅰ)求證:EF∥BC;
(Ⅱ)求直線DE與平面BCFE所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案