【題目】如圖是某幾何體挖去一部分后得到的三視圖,其中主視圖和左視圖相同都是一個(gè)等腰梯形及它的內(nèi)切圓,俯視圖中有兩個(gè)邊長(zhǎng)分別為2和8的正方形且圖中的圓與主視圖圓大小相等并且圓心為兩個(gè)正方形的中心.問(wèn)該幾何體的體積是( )
A.
B.
C.
D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·全國(guó)卷Ⅲ文,18)某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.
(1)估計(jì)六月份這種酸奶一天的需求量不超過(guò)300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫(xiě)出Y的所有可能值,并估計(jì)Y大于零的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某機(jī)械廠欲從米,米的矩形鐵皮中裁剪出一個(gè)四邊形加工成某儀器的零件,裁剪要求如下:點(diǎn)分別在邊上,且,.設(shè),四邊形的面積為(單位:平方米).
(1)求關(guān)于的函數(shù)關(guān)系式,求出定義域;
(2)當(dāng)的長(zhǎng)為何值時(shí),裁剪出的四邊形的面積最小,并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某快遞公司在某市的貨物轉(zhuǎn)運(yùn)中心,擬引進(jìn)智能機(jī)器人分揀系統(tǒng),以提高分揀效率和降低物流成本,已知購(gòu)買(mǎi)x臺(tái)機(jī)器人的總成本p(x)=萬(wàn)元.
(1)若使每臺(tái)機(jī)器人的平均成本最低,問(wèn)應(yīng)買(mǎi)多少臺(tái)?
(2)現(xiàn)按(1)中的數(shù)量購(gòu)買(mǎi)機(jī)器人,需要安排m人將郵件放在機(jī)器人上,機(jī)器人將郵件送達(dá)指定落袋格口完成分揀,經(jīng)實(shí)驗(yàn)知,每臺(tái)機(jī)器人的日平均分揀量q(m)= (單位:件),已知傳統(tǒng)人工分揀每人每日的平均分揀量為1200件,問(wèn)引進(jìn)機(jī)器人后,日平均分揀量達(dá)最大值時(shí),用人數(shù)量比引進(jìn)機(jī)器人前的用人數(shù)量最多可減少百分之幾?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某公司為鄭州園博園生產(chǎn)某特許商品,該公司年固定成本為10萬(wàn)元,每生產(chǎn)千件需另投入2 .7萬(wàn)元,設(shè)該公司年內(nèi)共生產(chǎn)該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬(wàn)元,
且,
(I)寫(xiě)出年利潤(rùn)W(萬(wàn)元〉關(guān)于該特許商品x(千件)的函數(shù)解析式;
〔II〕年產(chǎn)量為多少千件時(shí),該公司在該特許商品的生產(chǎn)中所獲年利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖半圓柱OO1的底面半徑和高都是1,面ABB1A1是它的軸截面(過(guò)上下底面圓心連線OO1的平面),Q,P分別是上下底面半圓周上一點(diǎn).
(1)證明:三棱錐Q﹣ABP體積VQ﹣ABP≤ ,并指出P和Q滿足什么條件時(shí)有AP⊥BQ
(2)求二面角P﹣AB﹣Q平面角的取值范圍,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為實(shí)數(shù).
(1)若曲線在點(diǎn)處的切線方程為,試求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng),,且時(shí),若恒有,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=(m2-m-1)·是冪函數(shù),對(duì)任意x1,x2∈(0,+∞)且x1≠x2,滿足,若a,b∈R且a+b>0,ab<0,則f(a)+f(b)的值( )
A. 恒大于0 B. 恒小于0
C. 等于0 D. 無(wú)法判斷
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若,若對(duì)任意,存在,使得 成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com