雙曲線=1(a>0,b>0)的左、右焦點分別是,,過作傾斜角的直線交雙曲線右支于M點,若垂直于x軸,則雙曲線的離心率e= .
科目:高中數(shù)學 來源: 題型:
.已知雙曲線=1(a>0,b>0)的左、右兩個焦點分別為F1、F2,P是它左支上一點,P到左準線的距離為d,雙曲線的一條漸近線為y=x,問是否存在點P,使|PF1|、|PF2|成等比數(shù)列?若存在,求出P的坐標;若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆廣東省高二上學期期末考試理科數(shù)學試卷(解析版) 題型:選擇題
已知雙曲線=1(a>0,b>0)的右焦點為F,若過點F且傾斜角為60°的直線與雙曲線的右支有且只有一個交點,則此雙曲線離心率的取值范圍是 ( )
A.[1,2] B.(1,2) C.[2,+∞) D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆山東省濟寧市高二上學期期末理科數(shù)學(解析版) 題型:選擇題
設P是雙曲線=1(a>0 ,b>0)上的點,F(xiàn)1、F2是焦點,雙曲線的離心 率是,且∠F1PF2=90°,△F1PF2面積是9,則a + b=( )
A.4 B.5 C.6 D.7
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年內蒙古高三下學期綜合檢測(一)文科數(shù)學試卷(解析版) 題型:解答題
雙曲線=1(a>0,b>0)的離心率為2,坐標原點到直線AB的距離為,其中A(0,-b),B(a,0).
(1)求雙曲線的標準方程;
(2)設F是雙曲線的右焦點,直線l過點F且與雙曲線的右支交于不同的兩點P、Q,點M為線段PQ的中點.若點M在直線x=-2上的射影為N,滿足·=0,且||=10,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com