【題目】設集合A={x|﹣1≤x≤2},B={x|x2﹣4x>0,x∈R},則A∩(RB)=(
A.[1,2]
B.[0,2]
C.[1,4]
D.[0,4]

【答案】B
【解析】解:∵集合A={x|﹣1≤x≤2},B={x|x2﹣4x>0,x∈R}={x>4,或x<0},
B={x|0≤x≤4},
∴A∩(CRB)={x|0≤x≤2}.
故選B.
【考點精析】利用交、并、補集的混合運算對題目進行判斷即可得到答案,需要熟知求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知正項等比數(shù)列{an}滿足:a7=a6+2a5 , 若存在兩項am , an , 使得 =4a1 , 則 + 的最小值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且bsinA=acosB.

(1)求角B的大。

(2)若b=3,sinC=2sinA,求a,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an= (n∈N* , n≥2),數(shù)列{bn}滿足關系式bn= (n∈N*).
(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分12分)已知,函數(shù)

)若,求曲線在點處的切線方程.

)若,求在閉區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩個糧庫要向A,B兩鎮(zhèn)運送大米,已知甲庫可調(diào)出100 t大米,乙?guī)炜烧{(diào)出80 t大米,A鎮(zhèn)需70 t大米,B鎮(zhèn)需110 t大米.兩庫到兩鎮(zhèn)的路程和運費如下表:

這兩個糧庫各運往A,B兩鎮(zhèn)多少t大米,才能使總運費最?此時總運費是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1經(jīng)過點A(﹣3,0),B(3,2),直線l2經(jīng)過點B,且l1⊥l2
(1)求經(jīng)過點B且在兩坐標軸上的截距相等的直線的方程;
(2)設直線l2與直線y=8x的交點為C,求△ABC外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了豐富退休生活,老王堅持每天健步走,并用計步器記錄每天健步走的步數(shù).他從某月中隨機抽取20天的健步走步數(shù)(老王每天健步走的步數(shù)都在之間,單位:千步),繪制出頻率分布直方圖(不完整)如圖所示.

(1)完成頻率分布直方圖,并估計該月老王每天健步走的平均步數(shù)(每組數(shù)據(jù)可用區(qū)間中點值代替;

(2)某健康組織對健步走步數(shù)的評價標準如下表:

每天步數(shù)分組(千步)

評價級別

及格

良好

優(yōu)秀

現(xiàn)從這20天中評價級別是“及格”或“良好”的天數(shù)里隨機抽取2天,求這2天的健步走結(jié)果屬于同一評價級別的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一農(nóng)民有基本農(nóng)田2畝,根據(jù)往年經(jīng)驗,若種水稻,則每季每畝產(chǎn)量為400公斤;若種花生,則每季每畝產(chǎn)量為100公斤.但水稻成本較高,每季每畝240元,而花生只需80元,且花生每公斤5元,稻米每公斤賣3元.現(xiàn)該農(nóng)民手頭有400元,兩種作物各種多少,才能獲得最大收益?

查看答案和解析>>

同步練習冊答案