如圖所示,直三棱柱ABCA1B1C1中,D、E分別是AB、BB1的中點,AA1=AC=CB=AB.
(1)證明:BC1∥平面A1CD;
(2)求二面角DA1CE的正弦值..
(1)見解析(2)
【解析】(1)證明:連結(jié)AC1交A1C于點F,則F為AC1中點.又D是AB中點,連結(jié)DF,則BC1∥DF.
因為DF?平面A1CD,BC1平面A1CD,所以BC1∥平面A1CD.
(2)由AC=CB=AB得AC⊥BC.以C為坐標(biāo)原點,的方向為x軸正方向,建立如圖所示的空間直角坐標(biāo)系Cxyz.
設(shè)CA=2,則D(1,1,0),E(0,2,1),A1(2,0,2),=(1,1,0),=(0,2,1),=(2,0,2).
設(shè)n=(x1,y1,z1)是平面A1CD的法向量,則即
可取n=(1,-1,-1).
同理,設(shè)m為平面A1CE的法向量,則可取m=(2,1,-2).
從而cos〈n,m〉==,故sin〈n,m〉=.即二面角D-A1C-E的正弦值為
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第六章第4課時練習(xí)卷(解析版) 題型:填空題
設(shè)a,b>0,且ab=1,不等式≤λ恒成立,則λ的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第六章第2課時練習(xí)卷(解析版) 題型:填空題
已知實數(shù)x、y滿足則z=2x+y的最小值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第六章第1課時練習(xí)卷(解析版) 題型:解答題
已知關(guān)于x的不等式:<1.
(1)當(dāng)a=1時,解該不等式;
(2)當(dāng)a>0時,解該不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第6課時練習(xí)卷(解析版) 題型:解答題
如圖,在三棱柱ABCA1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=2.
(1)求棱AA1與BC所成的角的大。
(2)在棱B1C1上確定一點P,使二面角P-AB-A1的平面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第6課時練習(xí)卷(解析版) 題型:解答題
如右圖,在棱長為a的正方體ABCDA1B1C1D1中,G為△BC1D的重心,
(1)試證:A1、G、C三點共線;
(2)試證:A1C⊥平面BC1D;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第6課時練習(xí)卷(解析版) 題型:填空題
已知空間四邊形OABC,點M、N分別是OA、BC的中點,且=a,=b,=c,用a,b,c表示向量=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第5課時練習(xí)卷(解析版) 題型:填空題
如圖所示,正方體ABCDA1B1C1D1的棱長為6,則以正方體ABCDA1B1C1D1的中心為頂點,以平面AB1D1截正方體外接球所得的圓為底面的圓錐的全面積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第3課時練習(xí)卷(解析版) 題型:填空題
P為△ABC所在平面外一點,O為P在平面ABC內(nèi)的射影.
(1)若P到△ABC三邊距離相等,且O在△ABC的內(nèi)部,則O是△ABC的________心;
(2)若PA⊥BC,PB⊥AC,則O是△ABC的________心;
(3)若PA,PB,PC與底面所成的角相等,則O是△ABC的________心.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com