直線2x+y+a=0與直線ax+4y-2=0垂直,則其交點(diǎn)坐標(biāo)為( 。
A、(-
3
5
,
4
5
B、(-
3
5
,-
4
5
C、(
3
5
,
4
5
D、(
3
5
,-
4
5
考點(diǎn):直線的一般式方程與直線的垂直關(guān)系
專題:直線與圓
分析:根據(jù)兩直線垂直,斜率之積等于-1,求出a=-2,把兩直線的方程聯(lián)立方程組求得交點(diǎn)的坐標(biāo).
解答: 解:由題意可得-2×(
a
4
)=-1,
∴a=-2.
兩直線即2x+y-2=0與-2x+4y-2=0.
2x+y-2=0
-2x+4y-2=0
 可得:
交點(diǎn)的坐標(biāo)為(
3
5
,
4
5
),
故選:C
點(diǎn)評:本題考查兩直線垂直的性質(zhì),求兩直線的交點(diǎn)坐標(biāo),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知3 logx8=2,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosα=-
5
13
,且π<α<
2
,則tanα=(  )
A、-
12
5
B、
12
5
C、-
5
12
D、
5
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在R上滿足f(x)=2f(x-2)-x2+8x-8,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是(  )
A、y=2x-1
B、y=x
C、y=3x-2
D、y=-2x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=4x2+
1
x
的單調(diào)增區(qū)間為( 。
A、(0,+∞)
B、(
1
2
,+∞)
C、(-∞,-1)
D、(-∞,-
1
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex(x≤0)
xsinx(x>0)
,則f′(-1)•f′(1)等于(  )
A、-e
B、0
C、e-1•(sin1+cos1)
D、e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC三個(gè)頂點(diǎn)是A(-1,4),B(-2,-1),C(2,3).
(1)求BC邊上的中線AD所在直線方程;
(2)求BC邊上的高AE所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

tan
35π
12
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,若角α的始邊為x軸的非負(fù)半軸,終邊為射線l:y=2x(x≤0).
(1)求tanα的值;
(2)求
cos(α-π)-2cos(
π
2
+α)
sin(α-
2
)-sinα
的值.

查看答案和解析>>

同步練習(xí)冊答案