已知函數(shù)f(x)在R上滿足f(x)=2f(x-2)-x2+8x-8,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是( 。
A、y=2x-1
B、y=x
C、y=3x-2
D、y=-2x+3
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:先根據(jù)f(x)=2f(x-2)-x2+8x-8求出函數(shù)f(x)的解析式,然后對(duì)函數(shù)f(x)進(jìn)行求導(dǎo),進(jìn)而可得到y(tǒng)=f(x)在點(diǎn)(1,f(1))處的切線方程的斜率,最后根據(jù)點(diǎn)斜式可求導(dǎo)切線方程.
解答: 解:∵f(x)=2f(x-2)-x2+8x-8,
∴f(x-2)=2f(x)-(x-2)2+8(x-2)-8.
∴f(x-2)=2f(x)-x2+4x-4-16-8x-8.
將f(x-2)代入f(x)=2f(x-2)-x2+8x-8,
得f(x)=4f(x)-2x2-8x+8-x2+8x-8.
∴f(x)=x2,f'(x)=2x
∴y=f(x)在(1,f(1))處的切線斜率為y′=2.
∴函數(shù)y=f(x)在(1,f(1))處的切線方程為y-1=2(x-1),
即y=2x-1.
故選A.
點(diǎn)評(píng):本題主要考查求函數(shù)解析式的方法和函數(shù)的求導(dǎo)法則以及導(dǎo)數(shù)的幾何意義.函數(shù)在某點(diǎn)的導(dǎo)數(shù)值等于該點(diǎn)的切線方程的斜率.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,最小值為2的是( 。
A、f(x)=sinx+
1
sinx
(x≠kx,k∈Z)
B、f(x)=lnx+
1
lnx
C、f(x)=
x2-4x+6
x-2
(x>2)
D、f(x)=2013x+
1
2013x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinx+2sin(x-
π
3
).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.已知f(A)=
3
,a=
3
b,證明:C=3B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=5,且nSn+1=2n(n+1)+(n+1)Sn(n∈N*),則與過點(diǎn)P(n,an)和點(diǎn)Q(n+2,an+1)(n∈N*)的直線平行的向量可以是( 。
A、(1,2)
B、(-
1
2
,2)
C、(2,
1
2
D、(4,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的頂點(diǎn)在原點(diǎn),始邊與x軸的正半軸重合,終邊經(jīng)過點(diǎn)P(-1,
3
).
m
=(
1
2
,cosx),
n
=(f(x),cos(x+α)).
(Ⅰ)求sin2α-tanα的值;
(Ⅱ)當(dāng)
m
n
時(shí),求函數(shù)f(x)的最小正周期;
(Ⅲ)在(Ⅱ)的條件下,設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若B為銳角,且f(B)=
3
2
,b=1,c=
3
,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2=1與直線y=kx+2沒有公共點(diǎn)的充分不必要條件是(  )
A、k∈(-
2
2
B、k∈(-∞,-
2
)∪(
2
,+∞)
C、k∈(-
3
,
3
D、k∈(-∞,-
3
)∪(
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線2x+y+a=0與直線ax+4y-2=0垂直,則其交點(diǎn)坐標(biāo)為( 。
A、(-
3
5
,
4
5
B、(-
3
5
,-
4
5
C、(
3
5
,
4
5
D、(
3
5
,-
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一段演繹推理是這樣的:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線b?平面α,直線a?平面α,直線b∥平面α,則直線b∥直線a”的結(jié)論顯然是錯(cuò)誤的,這是因?yàn)椋ā 。?/div>
A、大前提錯(cuò)誤
B、小前提錯(cuò)誤
C、推理形式錯(cuò)誤
D、非以上錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合{(x,y)|(x-rcosθ)2+(y-rsinθ)2≤1}其中0≤r≤1,0≤θ≤π,對(duì)應(yīng)圖形的面積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案