如圖,在長方體ABCD-A1B1 C1D1中,AB=AD=3cm,四棱錐A-BB1D1D的體積為6cm3,則AA1=
 
.    
考點:棱柱、棱錐、棱臺的體積
專題:空間位置關系與距離
分析:由已知得BD=3
2
,設四棱錐A-BB1D1D的高為h,則
1
2
×BDh=
1
2
AB×AD
,再由四棱錐A-BB1D1D的體積為6,能求出AA1
解答: 解:∵在長方體ABCD-A1B1 C1D1中,AB=AD=3cm,
∴BD=
9+9
=3
2

設四棱錐A-BB1D1D的高為h,
1
2
×BDh=
1
2
AB×AD
,
解得h=
AB•AD
BD
=
3×3
3
2
=
3
2
2
,
∵四棱錐A-BB1D1D的體積為6,
1
3
×
3
2
2
×3
2
×AA1=6
,
解得AA1=2(cm),
故答案為:2cm.
點評:本題考查長方體的高的求法,是基礎題,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

M是橢圓
x2
25
+
y2
9
=1上的點,F(xiàn)1、F2是橢圓的兩個焦點,∠F1MF2=60°,則△F1MF2的面積等于( 。
A、3
3
B、6
3
C、3
D、2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,點N在線段B1D1上,且D1N=2NB1,點M在線段A1B上,且BM=2MA1.求證:MN∥平面AC1B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和為Sn,且a1=1,an+1=
1
3
Sn,n=1、2、3…求:
(1)a2,a3,a4的值.
(2)數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
100
+
y2
64
=1上一點P到一個焦點的距離為8,則點P到另一焦點的距離是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于x的方程:x3-x=-
t
4
在[-1,t]上有且只有一個實根,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2mx+1.
(1)若m=1,求f(x)在[-1,3]上的最大值和最小值;
(2)若f(x)在[-2,2]為單調函數(shù),求m的值;
(3)在區(qū)間[-1,2]上的最大值為4,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知方程lgx+x=3的解所在區(qū)間為(m,m+1)(m∈Z),則m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面四個在平面內成立的結論:
①平行于同一直線的兩直線平行;
②一條直線如果與兩條平行直線中的一條垂直,則必與另一條也垂直;
③垂直于同一直線的兩直線平行;
④一條直線如果與兩條平行線中的一條相交,則必與另一條也相交;
推廣到空間后仍成立的是( 。
A、①②B、③④C、①③D、②④

查看答案和解析>>

同步練習冊答案