15.已知隨機(jī)變量ξ~B(n,p),且E(ξ)=12,D(ξ)=2.4,則n與p的值分別是(  )
A.15,$\frac{4}{5}$B.18,$\frac{2}{3}$C.20,$\frac{3}{5}$D.24,$\frac{1}{2}$

分析 由條件隨機(jī)變量ξ~B(n,p),可得Eξ=12=np,且Dξ=2.4=np(1-p),解方程組,即可求得n和p的值.

解答 解:∵隨機(jī)變量ξ~B(n,p),且Eξ=12,Dξ=2.4,
∴np=12,且np(1-p)=2.4,
解得 n=15,p=$\frac{4}{5}$.
故選A.

點(diǎn)評(píng) 本題主要考查二項(xiàng)分布的期望與方差的求法,利用Eξ=np,Dξ=np(1-p),得到 np=12,且np(1-p)=2.4是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)$\overrightarrow{a}$、$\overrightarrow$是兩個(gè)非零向量,則下列選項(xiàng)正確的是( 。
A.若|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$|,則$\overrightarrow{a}$⊥$\overrightarrow$B.若$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|
C.若|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$|,則$\overrightarrow{a}$,$\overrightarrow$共線D.若$\overrightarrow{a}$,$\overrightarrow$平行,則|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列函數(shù)中,在[-1,0]上單調(diào)遞減的是( 。
A.y=cosxB.y=-|x-1|C.y=log${\;}_{\frac{1}{2}}}$$\frac{2-x}{2+x}$D.y=ex+e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在平面直角坐標(biāo)系xOy中,已知圓C:$\left\{\begin{array}{l}{x=5cosθ-1}\\{y=5sinθ+2}\end{array}\right.$(θ為參數(shù))和直線l:3x+4y-10=0,則直線l與圓C相交所得的弦長(zhǎng)等于4$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.定義在R上的偶函數(shù)f(x),對(duì)任意x0∈[0,+∞)總存在正實(shí)數(shù)d,有$\frac{f({x}_{0}+d)-f({x}_{0})}fl0d01j$<0,則( 。
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.把函數(shù)f(x)=3x2+2(a-1)x+a2,x∈[-1,1]的最小值記為g(a).
(1)寫出g(a)的解析式;
(2)若f(x)的最小值為13,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知圓C:x2+y2+Dx+Ey+3=0,圓C關(guān)于直線x+y-1=0對(duì)稱,圓心在第二象限,半徑為$\sqrt{2}$.
(1)求圓C的方程;
(2)已知不過(guò)原點(diǎn)的直線l與圓C相切,且在x軸、y軸上的截距相等,求直線l的方程;
(3)已知點(diǎn)A(-1,1),若點(diǎn)B在圓C上運(yùn)動(dòng),P是AB的中點(diǎn),求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知數(shù)列{an}是等差數(shù)列,若a1-a9+a17=7,則a3+a15=( 。
A.7B.14C.21D.7(n-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知a<b,則在下列的一段推理過(guò)程中,錯(cuò)誤的推理步驟有③④.(填上所有錯(cuò)誤步驟的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案