已知函數(shù)f(x)=x3+ax2+bx+a2(a,b∈R)若函數(shù)f(x)在x=1處有極值10,則b的值為
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:先對(duì)函數(shù)求導(dǎo)f'(x)=3x2+2ax+b,由題意可得f(1)=10,f′(1)=0,結(jié)合導(dǎo)數(shù)存在的條件可求.
解答: 解:f′(x)=3x2+2ax+b
f′(1)=3+2a+b=0
f(1)=1+a+b+a2=10

當(dāng)
a=4
b=-11
時(shí),f'(x)=3x2+8x-11,△=64+132>0,所以函數(shù)有極值點(diǎn);
當(dāng)
a=-3
b=3
,所以函數(shù)無極值點(diǎn);
則b的值為:-11.
故答案為:-11.
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值,注意函數(shù)極值存在的充要條件,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若半徑均為2的四個(gè)球,每個(gè)球都與其他三個(gè)球外切,另有一個(gè)小球與這四個(gè)球都外切,則這個(gè)小球的半徑為(  )
A、
6
-
2
B、
6
-2
C、
10
-3
D、2
2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=50與直線l:x-2y-5=0相交于A,B兩點(diǎn)(點(diǎn)A的橫坐標(biāo)大于點(diǎn)B的橫坐標(biāo)),求:
(1)A,B的坐標(biāo);
(2)△ABO的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+4x,x<0
ex-1,x≥0
,則不等式f(x)-x≥0的解集為( 。
A、(-∞,-3]∪[0,1)
B、[-3,0]
C、(-∞,-3]∪[0,+∞)
D、[-3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某旅行團(tuán)為3位互不相識(shí)的游客提供10條不同的旅游路線供選擇,則至少有2人選擇同一條旅行路線的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=
1
4
x2,下列描述正確的是( 。
A、開口向右,焦點(diǎn)為(1,0)
B、開口向上,焦點(diǎn)為(0,
1
16
C、開口向右,準(zhǔn)線為x=-1
D、開口向上,準(zhǔn)線為y=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)A(-2,-2)、B(3,7),則線段AB的垂直平分線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的有
 

(1)函數(shù)y=f(1+x)與y=f(1-x)圖象關(guān)于x=0對(duì)稱;
(2)把函數(shù)y=f(-3x)按向量
a
=(
1
3
,0)平移后得到新函數(shù)y=f(1-3x);
(3)若函數(shù)y=f(3x+1)圖象關(guān)于x=1對(duì)稱,則y=f(1+x)圖象關(guān)于x=
1
3
對(duì)稱;
(4)若對(duì)任意x∈R有f(1+x)=f(x-1)成立,則f(x)的圖象關(guān)于x=1對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若對(duì)任意的n∈N*,2Sn是an+1和an的等差中項(xiàng),則an=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案