【題目】已知為奇函數(shù),為偶函數(shù),且.
(1)求及的解析式及定義域;
(2)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求實(shí)數(shù)k的范圍;
(3)若關(guān)于x的方程有解,求實(shí)數(shù)m的取值范圍.
【答案】(1),;(2);(3)
【解析】
(1)根據(jù)奇偶性得到方程組和,計(jì)算得到答案.
(2)化簡(jiǎn)得到,根據(jù)開(kāi)口方向和對(duì)稱(chēng)軸計(jì)算得到答案.
(3)化簡(jiǎn)得到,設(shè)計(jì)算得到,得到,計(jì)算得到答案.
(1)因?yàn)?/span>是奇函數(shù),是偶函數(shù),所以,.
因?yàn)?/span>,①所以用-x取代x代入上式得
,即,②
聯(lián)立①②可得,,
.
(2)因?yàn)?/span>,所以,
因?yàn)楹瘮?shù)在區(qū)間上為單調(diào)函數(shù),所以或,
所以所求實(shí)數(shù)k的取值范圍為.
(3)因?yàn)?/span>,所以.設(shè),
則.因?yàn)?/span>的定義域?yàn)?/span>,,
所以,,,,即,則.
因?yàn)殛P(guān)于x的方程有解,則,
故m的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且.
(1)判斷函數(shù)的奇偶性;
(2) 判斷函數(shù)在(1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:,命題:
(1)若是的充分條件,求實(shí)數(shù)的取值范圍;
(2)若,為真命題,為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高三一班、二班各有6名學(xué)生去參加學(xué)校組織的高中數(shù)學(xué)競(jìng)賽選拔考試,成績(jī)?nèi)缜o葉圖所示.
(1)若一班、二班6名學(xué)生的平均分相同,求值;
(2)若將競(jìng)賽成績(jī)?cè)?/span>、、內(nèi)的學(xué)生在學(xué)校推優(yōu)時(shí),分別賦分、2分、3分,現(xiàn)在從一班的6名參賽學(xué)生中選兩名,求推優(yōu)時(shí),這兩名學(xué)生賦分的和為4分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下判斷正確的是 ( )
A. 函數(shù)為上的可導(dǎo)函數(shù),則是為函數(shù)極值點(diǎn)的充要條件
B. 若命題為假命題,則命題與命題均為假命題
C. 若,則的逆命題為真命題
D. 在中,“”是“”的充要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)當(dāng)時(shí), 取得極值,求的值;
(Ⅱ)當(dāng)函數(shù)有兩個(gè)極值點(diǎn),且時(shí),總有 成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前,某市出租車(chē)的計(jì)價(jià)標(biāo)準(zhǔn)是:路程以?xún)?nèi)(含)按起步價(jià)8元收取,超過(guò)后的路程按1.9元收取,但超過(guò)后的路程需加收的返空費(fèi)(即單價(jià)為元)
(1)若,將乘客搭乘一次出租車(chē)的費(fèi)用(單位:元)表示為行程(單位:)的分段函數(shù);
(2)某乘客行程為,他準(zhǔn)備先乘一輛出租車(chē)行駛,然后再換乘另一輛出租車(chē)完成余下路程,請(qǐng)問(wèn):他這樣做是否比只乘一輛出租車(chē)完成全程更省錢(qián)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義域?yàn)?/span>的函數(shù)滿(mǎn)足:對(duì)于任意的實(shí)數(shù)都有 成立,且當(dāng)時(shí),.
(Ⅰ)判斷函數(shù)的奇偶性,并證明你的結(jié)論;
(Ⅱ)證明在上為減函數(shù);
(Ⅲ)若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其圖像與軸切于非原點(diǎn)的一點(diǎn),且該函數(shù)的極小值是,那么切點(diǎn)坐標(biāo)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com