20.滿足條件{1,2}⊆M⊆{1,2,3,4,5}的集合M的個(gè)數(shù)是8.

分析 根據(jù)已知中M滿足條件{1,2}⊆M⊆{1,2,3,4,5},列舉出所有滿足條件的集合M,可得答案.

解答 解:若M滿足條件{1,2}⊆M⊆{1,2,3,4,5},
則M可能為:
{1,2},{1,2,3},{1,2,4},{1,2,5},
{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}
共8個(gè),
故答案為:8

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是集合的包含關(guān)系判斷及應(yīng)用,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,B(-3,0),C(3,0),直線AB,AC的斜率之積$\frac{4}{9}$,求頂點(diǎn)A的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知△OBC中,點(diǎn)A是線段BC的中點(diǎn),點(diǎn)D是線段OB的一個(gè)靠近B的三等分點(diǎn),設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AO}$=$\overrightarrow$.
(1)用向量$\overrightarrow{a}$與$\overrightarrow$表示向量$\overrightarrow{OC},\overrightarrow{CD}$;
(2)若$\overrightarrow{OE}=\frac{3}{5}\overrightarrow{OA}$,判斷C、D、E是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)$f(x)=\sqrt{3+ax}$在區(qū)間(-2,4)內(nèi)單調(diào)遞減,則實(shí)數(shù)a的取值范圍是( 。
A.a<0B.$-\frac{3}{4}<a<0$C.$-\frac{3}{2}≤a<0$D.$-\frac{3}{4}≤a<0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)y=f(x)在點(diǎn)(2,1)處的切線與直線3x-y-2=0平行,則f′(2)等于( 。
A.1B.-1C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)的定義域是[-1,1],則函數(shù)g(x)=f(2x-1)lg(1-x)的定義域是(  )
A.[0,1]B.(0,1)C.[0,1)D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=2,anan+1=2(Sn+1)(n∈N*).
(1)求a2017的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)若數(shù)列{bn}滿足b1=1,bn=$\frac{1}{{{a_n}\sqrt{{a_{n-1}}}+{a_{n-1}}\sqrt{a_n}}}$(n≥2,n∈N*),求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)=5,且|$\overrightarrow{a}$|=2|$\overrightarrow$|=2,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={x|x2-8x+7<0},B={x|x2-2x-a2-2a<0}
(1)當(dāng)a=4時(shí),求A∩B;
(2)若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案