精英家教網 > 高中數學 > 題目詳情

如圖,直線過圓心,交⊙,直線交⊙(不與重合),直線與⊙相切于,交,且與垂直,垂足為,連結.

求證:(1);      
(2).

(1)利用弦切角∠BAC=∠CAG.(2)利用三角形相似。 AC2=AE·AF.

解析試題分析:(1)連結BC,∵AB是直徑,
∴∠ACB=90°,∴∠ACB=∠AGC=90°.
∵GC切⊙O于C,∴∠GCA=∠ABC.
∴∠BAC=∠CAG.                5分
(2)連結CF,∵EC切⊙O于C, ∴∠ACE=∠AFC.

又∠BAC=∠CAG,  ∴△ACF∽△AEC.
,∴AC2=AE·AF.          10分
考點:本題主要考查弦切角定理,圓的性質,三角形相似。
點評:簡單題,利用弦切角定理及三角形相似知識,證明角相等、確定線段長度的關系,是常見題目。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,已知切⊙于點E,割線PBA交⊙于A、B兩點,∠APE的平分線和AE、BE分別交于點C、D.

求證:(Ⅰ);   (Ⅱ).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在直角坐標系中,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.已知點A的極坐標為,直線的極坐標方程為,且點A在直線上。
(Ⅰ)求的值及直線的直角坐標方程;
(Ⅱ)圓C的參數方程為,試判斷直線l與圓C的位置關系.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知圓外有一點,作圓的切線,為切點,過的中點,作割線,交圓于兩點,連接并延長,交圓于點,連續(xù)交圓于點,若

(1)求證:△∽△;
(2)求證:四邊形是平行四邊形.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示,PA為圓的切線,A為切點,PBC是過點O的割線,PA=10,PB=5,的平分線與BC和圓分別交于點D和E。

(1)求證:
(2)求AD·AE的值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

中,,過點的直線與其外接圓交于點,交延長線于點.
(1)求證:; (2)若,求 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,A,B,C,D四點在同一圓上,AD的延長線與BC的延長線交于E點,且EC=ED.

(1)證明:CD∥AB;
(2)延長CD到F,延長DC到G,使得EF=EG,證明:A,B,G,F四點共圓.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分10分)
如圖,已知與圓相切于點,經過點的割線交圓于點、,的平分線分別交、于點、

求證:(1) .
(2) 若的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)如圖5,中,
在線上,且
(Ⅰ)求的長;
(Ⅱ)求的面積.

查看答案和解析>>

同步練習冊答案