19.已知△ABC滿足$\sqrt{3}$(sin2B+sin2C-sin2A)=2sinBsinC.
(1)求tanA;
(2)若BC=2$\sqrt{2}$,求△ABC的面積的最大值.

分析 (1)利用正弦定理把角化邊,再利用余弦定理得出cosA,從而得出tanA;
(2)利用余弦定理和基本不等式得出bc的最大值,代入三角形的面積公式得出面積的最大值.

解答 解:(1)∵$\sqrt{3}$(sin2B+sin2C-sin2A)=2sinBsinC,
∴b2+c2-a2=$\frac{2\sqrt{3}}{3}bc$.
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\sqrt{3}}{3}$.
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{6}}{3}$.
∴tanA=$\frac{sinA}{cosA}$=$\sqrt{2}$.
(2)由余弦定理得cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{^{2}+c{\;}^{2}-8}{2bc}$=$\frac{\sqrt{3}}{3}$,
∴b2+c2=$\frac{2\sqrt{3}}{3}bc$+8≥2bc,∴bc≤6+2$\sqrt{3}$.
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{\sqrt{6}}{6}$bc≤$\sqrt{6}$+$\sqrt{2}$.
∴△ABC的面積的最大值為$\sqrt{6}+\sqrt{2}$.

點(diǎn)評 本題考查了正弦定理,余弦定理,不等式的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)i是虛數(shù)單位,若復(fù)數(shù)$\frac{a-2i}{1+i}$的實(shí)部與虛部相等,則實(shí)數(shù)a的值為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}中,a1=1,且當(dāng)n∈N*時(shí),有$\frac{1}{n+1}$a1+$\frac{2}{n+1}$a2+$\frac{3}{n+1}$a3+…+$\frac{n}{n+1}$an=$\frac{1}{2}$an+1,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{{x}^{2}}{{x}^{2}+1}$,設(shè)f(n)=an(n∈N+),求證:$\frac{1}{2}$≤an<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=2x+a,g(x)=$\frac{1}{4}$(x2+3),若g[f(x)]=x2-a2x+1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知P為球O球面上的一點(diǎn),A為OP的中點(diǎn),若過點(diǎn)A且與OP垂直的平面截球O所得圓的面積為3π,則球O的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在邊長為2的正方形AP1P2P3中,點(diǎn)B、C分別是邊P1P2、P2P3的中點(diǎn),沿AB、BC、CA翻折成一個三棱錐P-ABC,使P1、P2、P3重合于點(diǎn)P,則三棱錐P-ABC的外接球的表面積為(  )
A.B.C.12πD.24π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知過原點(diǎn)O的動直線l與圓C:(x+1)2+y2=4交于A、B兩點(diǎn).
(Ⅰ)若|AB|=$\sqrt{15}$,求直線l的方程;
(Ⅱ)x軸上是否存在定點(diǎn)M(x0,0),使得當(dāng)l變動時(shí),總有直線MA、MB的斜率之和為0?若存在,求出x0的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知直線l:mx+$\sqrt{2}$ny=2與圓O:x2+y2=1交于A、B兩點(diǎn),若△AOB為直角三角形,則點(diǎn)M(m,n)到點(diǎn)P(-2,0)、Q(2,0)的距離之和( 。
A.最大值為6$\sqrt{2}$B.最小值為3$\sqrt{2}$C.是一個常數(shù)4$\sqrt{3}$D.是一個常數(shù)4$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案