求證下列等式成立:
n
R=1
R(R+1)=
n(n+1)(n+2)
3
考點:綜合法與分析法(選修)
專題:證明題,點列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:利用數(shù)學(xué)歸納法進行證明即可.
解答: 證明:①n=1時,左邊=2,右邊=2,結(jié)論成立;
②設(shè)n=k時,結(jié)論成立,即,則
k
R=1
R(R+1)
=
k(k+1)(k+2)
3

n=k+1時,
k+1
R=1
R(R+1)
=
k(k+1)(k+2)
3
+(k+1)(k+2)=(k+1)(k+2)(1+
k
3
)=
(k+1)(k+2)(k+3)
3
,結(jié)論成立,
由①②可知,
n
R=1
R(R+1)=
n(n+1)(n+2)
3
點評:本題考查數(shù)學(xué)歸納法,考查學(xué)生分析解決問題的能力,正確運用數(shù)學(xué)歸納法是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計算下列各式:
(Ⅰ)lg5•lg20+(lg2)2
(Ⅱ)0.027- 
1
3
-(-
1
6
-2+2560.75-
1
3
+(
1
9
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+2,g(x)=4x-1的定義域都是集合A,函數(shù)f(x)和g(x)的值域分別為S和T.
(Ⅰ)若A=[1,2],求S∩T;
(Ⅱ)若A=[1,m](m>1),且S=T,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)與雙曲線
x2
2
-y2=1有公共焦點,且離心率為
3
2
.問:以此橢圓的上頂點B為直角頂點作橢圓的內(nèi)接等腰直角△ABC,這樣的直角三角形是否存在?若存在,請說明有幾個;若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x|x-1|-blnx+m,(b,m∈R)
(Ⅰ)當(dāng)b=3時,判斷函數(shù)f(x)在[l,+∞)上的單調(diào)性;
(Ⅱ)記h(x)=f(x)+blnx,當(dāng)m>1時,求函數(shù)y=h(x)在[0,m]上的最大值;
(Ⅲ)當(dāng)b=1時,若函數(shù)f(x)有零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
k(x-1)
x

(1)當(dāng)k=e時,求函數(shù)h(x)=f(x)-g(x)的單調(diào)區(qū)間和極值;
(2)若f(x)≥g(x)恒成立,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市居民自來水收費標(biāo)準(zhǔn)如下:每戶每月用水量不超過25噸時,按每噸3.2元收費;當(dāng)每戶每月用水量超過25噸時,其中25噸按每噸為3.2元收費,超過25噸的部分按每噸4.80元收費.設(shè)每戶每月用水量為x噸,應(yīng)交水費y元.
(1)求y關(guān)于x的函數(shù)關(guān)系;
(2)某用戶1月份用水量為30噸,則1月份應(yīng)交水費多少元?
(3)若甲、乙兩用戶1月用水量之比為5:3,共交水費228.8元,分別求出甲、乙兩用戶該月的用水量和水費.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a1、a2、a3、a4四個數(shù),a1、a2、a3成等差數(shù)列,a2、a3、a4成等比數(shù)列,a1+a4=12,a2+a3=9,求a1、a2、a3、a4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩條漸近線均和圓C:x2+y2-6x+5=0相切,且雙曲線的右焦點為圓C的圓心,則該雙曲線的方程為(  )
A、
x2
4
-
y2
5
=1
B、
x2
5
-
y2
4
=1
C、
x2
3
-
y2
6
=1
D、
x2
6
-
y2
3
=1

查看答案和解析>>

同步練習(xí)冊答案