1.求函數(shù)$f(x)=sin(-2x+\frac{π}{2})$的單調(diào)遞減區(qū)間[kπ,kπ+$\frac{π}{2}$],k∈Z.

分析 利用誘導(dǎo)公式化簡(jiǎn)函數(shù)f(x),根據(jù)余弦函數(shù)的單調(diào)性求出f(x)的單調(diào)遞減區(qū)間.

解答 解:函數(shù)$f(x)=sin(-2x+\frac{π}{2})$=sin($\frac{π}{2}$-2x)=cos2x,
令2kπ≤2x≤2kπ+π,k∈Z,
解得kπ≤x≤kπ+$\frac{π}{2}$,k∈Z,
∴f(x)的單調(diào)遞減區(qū)間為[kπ,kπ+$\frac{π}{2}$],k∈Z.
故答案為:[kπ,kπ+$\frac{π}{2}$],k∈Z.

點(diǎn)評(píng) 本題考查了三角函數(shù)的化簡(jiǎn)與單調(diào)性問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若曲線f(x)=$\frac{1}{aln(x+1)}$(e-1<x<e2-1)和g(x)=-x3+x2(x<0)上分別存在點(diǎn)A、B,使得△OAB是以原點(diǎn)O為直角頂點(diǎn)的直角三角形,且斜邊AB的中點(diǎn)在y軸上,則實(shí)數(shù)a的取值范圍是( 。
A.(e,e2B.(e,$\frac{{e}^{2}}{2}$)C.(1,e2D.[1,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體的外接球的表面積等于(  )
A.$4\sqrt{3}π$B.C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知結(jié)論“a1、a2∈R+,且a1+a2=1,則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$≥4:若a1、a2、a3∈R+,且a1+a2+a3=1,則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$≥9”,請(qǐng)猜想若a1、a2、…、an∈R+,且a1+a2+…+an=1,則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$≥n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)求證:$\sqrt{8}-\sqrt{6}<\sqrt{5}-\sqrt{3}$.
(2)某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù):
sin213°+cos217°-sin13°cos17°;
sin215°+cos215°-sin15°cos15°;
sin218°+cos212°-sin18°cos12°;
sin2(-18°)+cos248°-sin(-18°)cos48°;
sin2(-25°)+cos255°-sin(-25°)cos55°.
①試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù);
②根據(jù)①的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知{an}為等差數(shù)列,Sn為其前n項(xiàng)和,若a1=8,a4+a6=0,則S8=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)y=kcos(kx)在區(qū)間$({\frac{π}{4},\frac{π}{3}})$單調(diào)遞減,則實(shí)數(shù)k的取值范圍為[-6,-4]∪(0,3]∪[8,9]∪{-12}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=2$,$\overrightarrow a,\overrightarrow b$的夾角為$\frac{π}{3}$,則$\overrightarrow a•\overrightarrow b$=(  )
A.1B.2C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=sin(2x+$\frac{π}{6}$)的最小正周期為( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案