【題目】如圖,在正方體中,棱長為1,點(diǎn)為線段上的動(dòng)點(diǎn)(包含線段端點(diǎn)),則下列結(jié)論錯(cuò)誤的是( )

A. 當(dāng)時(shí),平面

B. 當(dāng)中點(diǎn)時(shí),四棱錐的外接球表面為

C. 的最小值為

D. 當(dāng)時(shí),平面

【答案】C

【解析】

結(jié)合圖形,對(duì)給出的四個(gè)選項(xiàng)分別進(jìn)行分析討論后可得錯(cuò)誤的結(jié)論.

對(duì)于,連結(jié),,

,,,

設(shè)到平面的距離為,則,解得,

.

∴當(dāng)時(shí),與平面的交點(diǎn).

∵平面∥平面,

平面

∥平面,故A正確.

又由以上分析可得,當(dāng)時(shí),即為三棱錐的高,

平面,所以D正確.

對(duì)于B,當(dāng)中點(diǎn)時(shí),四棱錐為正四棱錐,

設(shè)平面的中心為,四棱錐的外接球?yàn)?/span>,

所以,解得,

故四棱錐的外接球表面積為,所以B正確.

對(duì)于C,連結(jié),則,

,

由等面積法得的最小值為,

的最小值為.所以C不正確.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè).

(1)若,且是實(shí)系數(shù)一元二次方程的一根,求的值;

(2)若是純虛數(shù),已知時(shí),取得最大值,求;

(3)肖同學(xué)和謝同學(xué)同時(shí)獨(dú)立地解答第(2)小題,己知兩人能正確解答該題的概率分別是0.80.9,求該題能被正確解答的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄A過定點(diǎn)且與圓相切,記動(dòng)圓圓心的軌跡為曲線.

(1)求曲線的方程;

(2)過點(diǎn)且斜率不為零的直線交曲線, 兩點(diǎn),在軸上是否存在定點(diǎn),使得直線的斜率之積為非零常數(shù)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題中真命題是  

A. 同垂直于一直線的兩條直線互相平行

B. 底面各邊相等,側(cè)面都是矩形的四棱柱是正四棱柱

C. 過空間任一點(diǎn)與兩條異面直線都垂直的直線有且只有一條

D. 過球面上任意兩點(diǎn)的大圓有且只有一個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四面體的頂點(diǎn)、、分別在兩兩垂直的三條射線 , 上,則在下列命題中,錯(cuò)誤的是( )

A. 是正三棱錐

B. 直線與平面相交

C. 直線與平面所成的角的正弦值為

D. 異面直線所成角是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知變量xy滿足約束條件,

1)畫出上述不等式組所表示的平面區(qū)域;

2)求z2xy的最大值;

3)求z=(x+12+y42的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四種說法中,正確的個(gè)數(shù)有

①命題均有的否定是:使得;

命題為真命題為真的必要不充分條件;

,使是冪函數(shù),且在上是單調(diào)遞增;

④不過原點(diǎn)的直線方程都可以表示成;

A. 3個(gè)B. 2個(gè)C. 1個(gè)D. 0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐的底面是邊長為1的正方形,側(cè)棱底面,且是側(cè)棱上的動(dòng)點(diǎn).

(1)求四棱錐的體積;

(2)如果的中點(diǎn),求證:平面;

(3)不論點(diǎn)在側(cè)棱的任何位置,是否都有?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

討論的單調(diào)性.

,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案