ξ | -1 | 0 | 1 |
P | a | b | c |
分析 要求這組數(shù)據(jù)的方差,需要先求出分布列中變量的概率,這里有三個條件,一個是三個數(shù)成等差數(shù)列,一個是概率之和是1,一個是這組數(shù)據(jù)的期望,聯(lián)立方程解出結果.
解答 解:∵a,b,c成等差數(shù)列,
∴2b=a+c,
∵a+b+c=1,
Eξ=-1×a+1×c=c-a=$\frac{1}{3}$.
聯(lián)立三式得a=$\frac{1}{6}$,b=$\frac{1}{3}$,c=$\frac{1}{2}$,
∴Dξ=(-1-$\frac{1}{3}$)2×$\frac{1}{6}$+($\frac{1}{3}$)2×$\frac{1}{3}$+($\frac{2}{3}$)2×$\frac{1}{2}$=$\frac{5}{9}$.
故答案為:$\frac{5}{9}$.
點評 本題是一綜合題目,包括等差數(shù)列,離散型隨機變量的期望和方差,主要考查分布列和期望的簡單應用,通過解方程組得到要求的變量,這與求變量的期望是一個相反的過程,但是兩者都要用到期望的公式.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{\sqrt{2}}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | -$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 函數(shù)f(x)的周期為π | |
B. | 對于?a∈R,函數(shù)f(x+a)都不可能為偶函數(shù) | |
C. | ?x0∈(0,3π),使f(x0)=4 | |
D. | 函數(shù)f(x)在區(qū)間$[\frac{π}{2},\frac{5π}{4}]$內(nèi)單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com