【題目】在△ABC中,a、b、c分別為內(nèi)角A、B、C的對(duì)邊,且2asinA=(2b+c)sinB+(2c+b)sinC
(1)求A的大;
(2)若sinB+sinC=1,試判斷△ABC的形狀.
【答案】
(1)解:由已知,根據(jù)正弦定理得2a2=(2b+c)b+(2c+b)c
即a2=b2+c2+bc
由余弦定理得a2=b2+c2﹣2bccosA
故
(2)解:由(1)得sin2A=sin2B+sin2C+sinBsinC.
變形得 =(sinB+sinC)2﹣sinBsinC
又sinB+sinC=1,得sinBsinC=
上述兩式聯(lián)立得
因?yàn)?°<B<60°,0°<C<60°,
故B=C=30°
所以△ABC是等腰的鈍角三角形.
【解析】(1)利用正弦定理把題設(shè)等式中的角的正弦轉(zhuǎn)化成邊,求得a,b和c關(guān)系式,代入余弦定理中求得cosA的值,進(jìn)而求得A.(2)把(1)中a,b和c關(guān)系式利用正弦定理轉(zhuǎn)化成角的正弦,與sinB+sinC=1聯(lián)立求得sinB和sinC的值,進(jìn)而根據(jù)C,B的范圍推斷出B=C,可知△ABC是等腰的鈍角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)已知雙曲線的焦點(diǎn)為,過的直線與曲線相交于兩點(diǎn).
(1)若直線的傾斜角為,且,求;
(2)若,橢圓上兩個(gè)點(diǎn)滿足: 三點(diǎn)共線且,求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中錯(cuò)誤的是( )
A. 如果平面不垂直于平面,那么平面內(nèi)一定不存在直線垂直于平面
B. 如果平面平面,平面平面, ,那么平面
C. 不存在四個(gè)角都是直角的空間四邊形
D. 空間圖形經(jīng)過中心投影后,直線還是直線,但平行直線可能變成相交的直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在區(qū)間上的函數(shù)和,如果對(duì)任意,都有成立,則稱在區(qū)間上可被替代, 稱為“替代區(qū)間”.給出以下問題:
①在區(qū)間上可被替代;
②如果在區(qū)間可被替代,則;
③設(shè),則存在實(shí)數(shù)及區(qū)間, 使得在區(qū)間上被替代.
其中真命題是
A. ①②③ B. ②③ C. ①③ D. ①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函f(x)=sin(ωx+φ)(ω>0,|φ|<π)的部分圖象如圖所示:
(1)求ω,φ的值;
(2)設(shè)g(x)=2 f( )f( )﹣1,當(dāng)x∈[0, ]時(shí),求函數(shù)g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn),離心率為,點(diǎn)坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的左焦點(diǎn)任作一條不垂直于坐標(biāo)軸的直線,交橢圓于兩點(diǎn),記弦的中點(diǎn)為,過作的垂線交直線于點(diǎn),證明:點(diǎn)在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是首項(xiàng)為a1=,公比q=的等比數(shù)列,設(shè),數(shù)列滿足cn=an·bn.
(1)求證:{bn}是等差數(shù)列;
(2)求數(shù)列{cn}的前n項(xiàng)和Sn;
(3)若cn≤m2+m-1對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知.
(1)求角B的大;
(2)若a+c=1,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù), .
(Ⅰ)討論的極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若對(duì)于任意,總有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com