3.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,過橢圓的左焦點F1且與x軸垂直的直線與橢圓相交于P,Q兩點,△OPQ的面積為$\frac{{\sqrt{3}}}{2}$,O為坐標原點.
(Ⅰ)求橢圓E的方程;
(Ⅱ)點M、N為橢圓E上不同的兩點,kOM•kON=-$\frac{b^2}{a^2}$,求證:△OMN的面積為定值.

分析 (Ⅰ)由橢圓的離心率為$\frac{{\sqrt{3}}}{2}$,過橢圓的左焦點F1且與x軸垂直的直線與橢圓相交于P,Q兩點,△OPQ的面積為$\frac{{\sqrt{3}}}{2}$,O為坐標原點,列出方程組求出a,b,由此能求出橢圓E的方程.
(Ⅱ)當l⊥x軸時,設M(x0,y0),N(x0,-y0),則$\frac{{{x}_{0}}^{2}}{4}+{{y}_{0}}^{2}=1$,由kOM•kON=-$\frac{^{2}}{{a}^{2}}$,得$\frac{{y}_{0}}{{x}_{0}}$×$\frac{-{y}_{0}}{{x}_{0}}$=-$\frac{1}{4}$,由此能求出S△MON=1.當l與x軸不垂直時,設直線l的方程為:y=kx+m,M(x1,y1),N(x2,y2),聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,化為:(1+4k2)x2+8kmx+4m2-4=0,由此利用根的判別式、韋達定理、弦長公式、點到直線距離公式,結合已知條件能求出S△MON=1為定值.

解答 解:(Ⅰ)∵橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,
過橢圓的左焦點F1且與x軸垂直的直線與橢圓相交于P,Q兩點,△OPQ的面積為$\frac{{\sqrt{3}}}{2}$,O為坐標原點,
∴$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{\frac{1}{2}×\frac{2^{2}}{a}×c=\frac{\sqrt{3}}{2}}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得a=2,c=$\sqrt{3}$,b=1,
∴橢圓E的方程為$\frac{{x}^{2}}{4}+{y}^{2}$=1.
證明:(Ⅱ)當l⊥x軸時,設M(x0,y0),N(x0,-y0),
則$\frac{{{x}_{0}}^{2}}{4}+{{y}_{0}}^{2}=1$,由kOM•kON=-$\frac{^{2}}{{a}^{2}}$,得$\frac{{y}_{0}}{{x}_{0}}$×$\frac{-{y}_{0}}{{x}_{0}}$=-$\frac{1}{4}$,
聯(lián)立解得:$\left\{\begin{array}{l}{{x}_{0}=\sqrt{2}}\\{{y}_{0}=±\frac{\sqrt{2}}{2}}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{0}=-\sqrt{2}}\\{{y}_{0}=±\frac{\sqrt{2}}{2}}\end{array}\right.$,∴S△MON=$\frac{1}{2}$×$\sqrt{2}×\sqrt{2}$=1.
當l與x軸不垂直時,設直線l的方程為:y=kx+m,M(x1,y1),N(x2,y2),
聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,化為:(1+4k2)x2+8kmx+4m2-4=0,
△>0,可得1+4k2>m2
∴x1+x2=$\frac{-8km}{1+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$,
則|MN|=$\sqrt{(1+{k}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{(1+4{k}^{2})[\frac{64{k}^{2}{m}^{2}}{(1+4{k}^{2})^{2}}-\frac{4(4{m}^{2}-4)}{1+4{k}^{2}}]}$
=$\frac{4\sqrt{(1+{k}^{2})(1+4{k}^{2}-{m}^{2})}}{1+4{k}^{2}}$.
由kOM•kON=-$\frac{^{2}}{{a}^{2}}$,得$\frac{{y}_{1}}{{x}_{1}}$=-$\frac{1}{4}$,
化為4(kx1+m)(kx2+m)+x1x2=0,即(1+4k2)x1x2+4mk(x1+x2)+4m2=0,
∴$\frac{(1+4{k}^{2})(4{m}^{2}-4)}{1+4{k}^{2}}$-$\frac{32{k}^{2}{m}^{2}}{1+4{k}^{2}}$+4m2=0,化為:2m2=1+4k2
把m2=$\frac{1+4{k}^{2}}{2}$代入|MN|,得|MN|=$\frac{2\sqrt{2(1+{k}^{2})}}{\sqrt{1+4{k}^{2}}}$,
原點O到直線l的距離d=$\frac{|m|}{\sqrt{1+{k}^{2}}}$.

∴S△MON=$\frac{1}{2}$|MN|d=$\frac{\sqrt{2}}{\sqrt{1+4{k}^{2}}}$×|m|=$\frac{\sqrt{2}}{\sqrt{1+4{k}^{2}}}×\frac{\sqrt{1+4{k}^{2}}}{\sqrt{2}}$=1.
綜上得S△MON=1為定值.

點評 本題考查了橢圓的標準方程及其性質、直線與圓相切的性質、一元二次方程的根與系數(shù)的關系、弦長公式、點到直線的距離公式、三角形面積計算公式、二次函數(shù)的單調性,考查了推理能力與計算能力,屬于難題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.已知集合A={-4,2,-1,5},B={x|y=$\sqrt{x+2}$},則A∩B中元素的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設橢圓E的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),點O為坐標原點,點A的坐標為(a,0),點B的坐標為(0,b),點M在線段AB上.滿足|BM|=2|AM|,直線0M的斜率為$\frac{\sqrt{5}}{10}$.
(1)求橢圓的離心率;
(2)設點C的坐標為(-a,0),N為線段BC的中點,點N關于直線AB的對稱點的縱坐標為$\frac{13}{2}$,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.經過點(2,1)的直線l和兩坐標軸相交于A、B兩點,若△AOB(O是原點)的面積恰為4,則符合要求的直線l有3條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,已知A,B,Q是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的三個頂點,橢圓的離心率e=$\frac{\sqrt{3}}{2}$,點B到直線AQ的距離是$\frac{4\sqrt{5}}{5}$,設P是橢圓上異于A,B,Q的任意一點,直線PA,PB分別與經過點Q,且與x軸垂直的直線相交于M,N兩點.
(1)求橢圓的方程;
(2)求證:以MN為直徑的圓C與圓心在x軸上的定圓相切,并求出定圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知在雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0,c=$\sqrt{{a}^{2}+^{2}}$)中,2a=b+c,則該雙曲線的漸近線的斜率等于(  )
A.±$\frac{4}{3}$B.±$\frac{3}{5}$C.±$\frac{3}{4}$D.±$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在銳角△ABC中,B=60°,|${\overrightarrow{AB}$-$\overrightarrow{AC}}$|=2,則$\overrightarrow{AB}$•$\overrightarrow{AC}$的取值范圍為( 。
A.(0,12)B.[${-\frac{1}{4}$,12)C.(0,4]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在△ABC中,內角A,B,C對應的三邊長分別是a,b,c,且滿足c(bcosA-$\frac{a}{2}$)=b2-a2
(I)求角B的大。
(Ⅱ)若BD為AC邊上的中線,cosA=$\frac{1}{7}$,BD=$\frac{\sqrt{129}}{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.求滿足下列條件的圓的標準方程,過A(4,0)、B(0,3)、C(0,0)三點.

查看答案和解析>>

同步練習冊答案