已知實(shí)數(shù)a>0,且滿足以下條件

,|sinx|>a有解;

,sin2x+asinx-1≥0;

則實(shí)數(shù)a的取值范圍________

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在第十六屆廣州亞運(yùn)會上,某項(xiàng)目的比賽規(guī)則為:由兩人(記為甲和乙)進(jìn)行比賽,每局勝者得1分,負(fù)者得0分(無平局),比賽進(jìn)行到有一人比對方多2分或打滿6局時停止.設(shè)甲在每局中獲勝的概率為p(p>0.5),且各局勝負(fù)相互獨(dú)立.已知第二局比賽結(jié)束時比賽停止的概率為
59

(Ⅰ)求實(shí)數(shù)p的值;
(Ⅱ)如圖為統(tǒng)計比賽的局?jǐn)?shù)n和甲、乙的總得分?jǐn)?shù)S、T的程序框圖.其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.請問在第一、第二兩個判斷框中應(yīng)分別填寫什么條件;
(Ⅲ)設(shè)ζ表示比賽停止時已比賽的局?jǐn)?shù),求隨機(jī)變量ζ的分布列和數(shù)學(xué)期望Eζ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省高一上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本小題滿10分)注意:第(3)小題平行班學(xué)生不必做,特保班學(xué)生必須做。對于函數(shù),若存在x0∈R,使成立,則稱x0的不動點(diǎn)。已知函數(shù)a≠0)。

(1)當(dāng)時,求函數(shù)的不動點(diǎn);

(2)若對任意實(shí)數(shù)b,函數(shù)恒有兩個相異的不動點(diǎn),求a的取值范圍;

(3)(特保班做) 在(2)的條件下,若圖象上AB兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動點(diǎn),且AB兩點(diǎn)關(guān)于點(diǎn)對稱,求的的最小值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在第十六屆廣州亞運(yùn)會上,某項(xiàng)目的比賽規(guī)則為:由兩人(記為甲和乙)進(jìn)行比賽,每局勝者得1分,負(fù)者得0分(無平局),比賽進(jìn)行到有一人比對方多2分或打滿6局時停止.設(shè)甲在每局中獲勝的概率為p(p>0.5),且各局勝負(fù)相互獨(dú)立.已知第二局比賽結(jié)束時比賽停止的概率為數(shù)學(xué)公式
(Ⅰ)求實(shí)數(shù)p的值;
(Ⅱ)如圖為統(tǒng)計比賽的局?jǐn)?shù)n和甲、乙的總得分?jǐn)?shù)S、T的程序框圖.其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.請問在第一、第二兩個判斷框中應(yīng)分別填寫什么條件;
(Ⅲ)設(shè)ζ表示比賽停止時已比賽的局?jǐn)?shù),求隨機(jī)變量ζ的分布列和數(shù)學(xué)期望Eζ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿10分)注意:第(3)小題平行班學(xué)生不必做,特保班學(xué)生必須做。

對于函數(shù),若存在x0∈R,使成立,則稱x0的不動點(diǎn)。

已知函數(shù)a≠0)。

(1)當(dāng)時,求函數(shù)的不動點(diǎn);

(2)若對任意實(shí)數(shù)b,函數(shù)恒有兩個相異的不動點(diǎn),求a的取值范圍;

(3)(特保班做) 在(2)的條件下,若圖象上AB兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動點(diǎn),且A、B兩點(diǎn)關(guān)于點(diǎn)對稱,求的的最小值。

查看答案和解析>>

同步練習(xí)冊答案