分析 普通方程為y-1=a(x-3),過定點(diǎn)P(3,1),當(dāng)弦長|AB|最短時(shí),CP⊥AB,求出CP的斜率,可得AB的斜率,即可得出結(jié)論.
解答 解:直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3+t}\\{y=1+at}\end{array}\right.$,普通方程為y-1=a(x-3),過定點(diǎn)P(3,1)
曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(α為參數(shù)),普通方程為(x-2)2+y2=4,
當(dāng)弦長|AB|最短時(shí),CP⊥AB,∵kCP=$\frac{1-0}{3-2}$=1,kAB=-1
∴直線l的普通方程為x+y-4=0,
故答案為:x+y-4=0.
點(diǎn)評(píng) 本題考查參數(shù)方程與普通方程的轉(zhuǎn)化,考查直線與圓的位置關(guān)系的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | 1 | C. | 2 | D. | $\frac{4π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$) | B. | ($\frac{π}{4}$,$\frac{3π}{4}$) | C. | (0,$\frac{π}{2}$)∪($\frac{π}{2}$,π) | D. | [0,π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ±1 | B. | 1 | C. | -1 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x1<x2 | B. | x1>x2 | C. | ${x_1}^2<{x_2}^2$ | D. | ${x_1}^2>{x_2}^2$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{π}{4}$,+∞) | B. | [$\frac{π}{4}$,$\frac{5π}{12}$) | C. | [$\frac{π}{4}$,$\frac{π}{2}$) | D. | [$\frac{π}{4}$,$\frac{π}{3}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com