分析 把圓的方程化為標(biāo)準(zhǔn)形式,求出圓心和半徑,若A為PQ中點(diǎn),則CA⊥PQ,利用弦長公式求得|PQ|;若PQ=10為直徑,則直線PQ經(jīng)過圓心C,由兩點(diǎn)式求得PQ的方程.
解答 解:圓C:x2+y2+6x-8y=0 即圓C:(x+3)2+(y-4)2 =25,
表示以C(-3,4)為圓心、半徑等于5的圓.
若A為PQ中點(diǎn),則CA⊥PQ,|PQ|=2$\sqrt{{r}^{2}{-AC}^{2}}$=2$\sqrt{25-20}$=2$\sqrt{5}$.
若PQ=10為直徑,故直線PQ經(jīng)過圓心C(-3,4),
由兩點(diǎn)式求得PQ的方程為$\frac{y-0}{4-0}$=$\frac{x+5}{-3+5}$,即y=2x+10,
故答案為:$2\sqrt{5}$;y=2x+10.
點(diǎn)評(píng) 本題主要考查圓的標(biāo)準(zhǔn)方程,直線和圓相交的性質(zhì),用兩點(diǎn)式求直線的方程,弦長公式,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-$\frac{1}{2}$${e}^{\frac{1}{4}}$) | B. | ($\frac{1}{4}$-$\frac{1}{2}$${e}^{\frac{1}{4}}$,+∞) | C. | (-∞,$\frac{1}{4}$-$\frac{1}{2}$${e}^{\frac{1}{4}}$) | D. | ($\frac{1}{2}$-$\frac{1}{2}$${e}^{\frac{1}{4}}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 0 | C. | $\frac{\sqrt{6}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 270 | B. | 273 | C. | 276 | D. | 279 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com