設函數f(x)=x2-mlnx,h(x)=x2-x+a.
(I) 當a=0時,f(x)≥h(x)在(1,+∞)上恒成立,求實數m的取值范圍;
(II) 當m=2時,若函數k(x)=f(x)-h(x)在[1,3]上恰有兩個不同零點,求實數 a的取值范圍;
(III) 是否存在實數m,使函數f(x)和函數h(x)在公共定義域上具有相同的單調性?若存在,求出m的值,若不存在,說明理由。
(1)由a=0,f(x)≥h(x)可得-mlnx≥-x
即 ┉┉┉┉┉┉┉┉1分
記,則f(x)≥h(x)在(1,+∞)上恒成立等價于.
求得 ┉┉┉┉┉┉┉┉2分
當時;;當時, ┉┉┉┉┉┉┉┉3分
故在x=e處取得極小值,也是最小值,
即,故. ┉┉┉┉┉┉┉┉4分
(2)函數k(x)=f(x)-h(x)在[1,3]上恰有兩個不同的零點等價于方程x-2lnx=a,在[1,3]上恰有兩個相異實根。┉┉┉┉┉┉┉┉5分
令g(x)=x-2lnx,則 ┉┉┉┉┉┉┉┉6分
當時,,當時,
g(x)在[1,2]上是單調遞減函數,在上是單調遞增函數。
故 ┉┉┉┉┉┉┉┉8分
又g(1)=1,g(3)=3-2ln3
∵g(1)>g(3),∴只需g(2)<a≤g(3),
故a的取值范圍是(2-2ln2,3-2ln3) ┉┉┉┉┉┉┉┉9分
(3)存在m=,使得函數f(x)和函數h(x)在公共定義域上具有相同的單調性
,函數f(x)的定義域為(0,+∞)。┉┉┉┉┉┉10分
若,則,函數f(x)在(0,+∞)上單調遞增,不合題意;┉┉┉11分
若,由可得2x2-m>0,解得x>或x<-(舍去)
故時,函數的單調遞增區(qū)間為(,+∞)
單調遞減區(qū)間為(0, ) ┉┉┉┉┉┉┉┉12分
而h(x)在(0,+∞)上的單調遞減區(qū)間是(0,),單調遞增區(qū)間是(,+∞)
故只需=,解之得m= ┉┉┉┉┉┉┉┉13分
即當m=時,函數f(x)和函數h(x)在其公共定義域上具有相同的單調性。┉14分
科目:高中數學 來源: 題型:
n |
p1+p2+…+pn |
1 |
2n+1 |
an |
2n+1 |
an |
2n+1 |
查看答案和解析>>
科目:高中數學 來源: 題型:
|
查看答案和解析>>
科目:高中數學 來源: 題型:
1 |
4 |
B |
2 |
| ||
4 |
2
| ||
3 |
查看答案和解析>>
科目:高中數學 來源: 題型:
|
查看答案和解析>>
科目:高中數學 來源: 題型:
x2-x+n |
x2+x+1 |
n-1 |
2 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com