考點(diǎn):數(shù)列遞推式,等比數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:(1)由S
n=
(a
n2+3a
n+2),得當(dāng)n≥2時(shí),
an=Sn-Sn-1=(an2-an-12+3an-3an-1),整理后結(jié)合a
n>0可得a
n-a
n-1=3,即數(shù)列{a
n}是首項(xiàng)為1,公差為3的等差數(shù)列.由等差數(shù)列的通項(xiàng)公式得答案;
(2)由
ak1=a1=1,ak2=a4=10,可得數(shù)列{
akn}是首項(xiàng)為1,公比為10的等比數(shù)列.又
akn∈{a
1,a
2,…,a
n,…},由通項(xiàng)相等可求k
n的值.
解答:
解:(1)由S
n=
(a
n2+3a
n+2),得
當(dāng)n≥2時(shí),
an=Sn-Sn-1=(an2-an-12+3an-3an-1),
整理,得(a
n+a
n-1)(a
n-a
n-1-3)=0,
∵a
n>0,∴a
n-a
n-1=3.
∴數(shù)列{a
n}是首項(xiàng)為1,公差為3的等差數(shù)列.
故a
n=1+3(n-1)=3n-2;
(2)
ak1=a1=1,ak2=a4=10,
∴數(shù)列{
akn}是首項(xiàng)為1,公比為10的等比數(shù)列.
則
akn=10n-1,
又
akn∈{a
1,a
2,…,a
n,…},
∴
akn=3kn-2=10n-1,
∴
kn=,n∈N*.
點(diǎn)評(píng):本題考查了數(shù)列遞推式,考查了等差關(guān)系的確定,考查了等比數(shù)列的通項(xiàng)公式,是中檔題.