7.已知集合M={x|x2-3x≤10},N={x|a-1≤x≤2a+1}.
(1)若a=2,求(∁RM)∪N;
(2)若M∪N=M,求實(shí)數(shù)a的取值范圍.

分析 (1)求出集合的等價(jià)條件,利用集合的基本運(yùn)算進(jìn)行求解即可.
(2)根據(jù)條件M∪N=M,得N⊆M,利用集合關(guān)系進(jìn)行求解即可.

解答 解:(1)M={x|x2-3x≤10}={x|-2≤x≤5},
若a=2,則N={x|1≤x≤3}.
則∁RM={x|x>5或x<-2},
則(∁RM)∪N={x||x>5或x<-2或1≤x≤3}.
  (2)若M∪N=M,則N⊆M,
若a-1>2a+1,即a<-2,此時(shí)N是空集,滿足條件.
若a≥-2,則N不是空集,則滿足$\left\{\begin{array}{l}{2a+1≥a-1}\\{2a+1≤5}\\{a-1≥-2}\end{array}\right.$,得$\left\{\begin{array}{l}{a≥-2}\\{a≤2}\\{a≥-1}\end{array}\right.$,
即-1≤a≤2,
綜上a<-1或-1≤a≤2.

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,根據(jù)條件求出集合的等價(jià)條件,結(jié)合集合的基本運(yùn)算是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)函數(shù)f(x)=|lgx|,若0<a<b,且f(a)=f(b),則z=16a2+4a+b2+b的最小值是( 。
A.12B.18C.20D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.曲線y=x2,x=0,y=1,所圍成的圖形的面積為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知命題p:“直線l:x-y+a=0與圓C:(x+1)2+y2=2有公共點(diǎn)”,則a的取值范圍是[-1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)y=log${\;}_{\frac{1}{3}}$(x2-9)的單調(diào)遞增區(qū)間是( 。
A.(-∞,0)B.(-∞,-3)C.(3,+∞)D.(-3,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知tanα=-$\frac{1}{3}$,則sin2α=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖,點(diǎn)列{An}、{Bn}分別在銳角兩邊(不在銳角頂點(diǎn)),且|AnAn+1|=|An+1An+2|,An≠An+2,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1,n∈N*(P≠Q(mào)表示點(diǎn)P與Q不重合),若dn=|AnBn|,Sn為△AnBnBn+1的面積,則( 。
A.{dn}是等差數(shù)列B.{Sn}是等差數(shù)列
C.{d${\;}_{n}^{2}$}是等差數(shù)列D.{S${\;}_{n}^{2}$}是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(-x)+f(x+3)=0;當(dāng)x∈(0,3)時(shí),f(x)=$\frac{elnx}{x}$,其中e是自然對(duì)數(shù)的底數(shù),且e≈2.72,則方程6f(x)-x=0在[-9,9]上的解的個(gè)數(shù)為(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.不等式x2+x-2>0的解集為{x|x<-2或x>1}.

查看答案和解析>>

同步練習(xí)冊(cè)答案