【題目】某早餐店對(duì)一款新口味的酸奶進(jìn)行了一段時(shí)間試銷,定價(jià)為5元/瓶.酸奶在試銷售期間足量供應(yīng),每天的銷售數(shù)據(jù)按照[15,25],(25,35],(35,45],(45,55]分組,得到如下頻率分布直方圖,以不同銷量的頻率估計(jì)概率.試銷結(jié)束后,這款酸奶正式上市,廠家只提供整箱批發(fā):大箱每箱50瓶,批發(fā)成本85元;小箱每箱30瓶,批發(fā)成本65元.由于酸奶保質(zhì)期短,當(dāng)天未賣出的只能作廢.該早餐店以試銷售期間的銷量作為參考,決定每天僅批發(fā)一箱(計(jì)算時(shí)每個(gè)分組取中間值作為代表,比如銷量為(45,55]時(shí)看作銷量為50瓶).
(1)設(shè)早餐店批發(fā)一大箱時(shí),當(dāng)天這款酸奶的利潤(rùn)為隨機(jī)變量X,批發(fā)一小箱時(shí),當(dāng)天這款酸奶的利潤(rùn)為隨機(jī)變量Y,求X和Y的分布列;
(2)從早餐店的收益角度和利用所學(xué)的知識(shí)作為決策依據(jù),該早餐店應(yīng)每天批發(fā)一大箱還是一小箱?(必須作出一種合理的選擇)
【答案】(1)見解析;(2)早餐店應(yīng)該批發(fā)一小箱.
【解析】
(1)先由頻率分布直方圖求出各銷量對(duì)應(yīng)的概率,然后分別列出隨機(jī)變量X和Y可能的取值及其概率;
(2)先算出隨機(jī)變量X和Y的數(shù)學(xué)期望,發(fā)現(xiàn)期望值相同,然后再算出其方差,方差越小越穩(wěn)定越好.
(1)若早餐店批發(fā)一大箱,批發(fā)成本為85元,依題意,銷量有20,30,40,50四種情況.
當(dāng)銷量為20瓶時(shí),利潤(rùn)為5×20﹣85=15元,
當(dāng)銷量為30瓶時(shí),利潤(rùn)為5×30﹣85=65元,
當(dāng)銷量為40瓶時(shí),利潤(rùn)為5×40﹣85=115元,
當(dāng)銷量為50瓶時(shí),利潤(rùn)為5×50﹣85=165元.
隨機(jī)變量X的分布列為:
X | 15 | 65 | 115 | 165 |
P | 0.3 | 0.4 | 0.2 | 0.1 |
若早餐店批發(fā)一小箱,批發(fā)成本為65元,依題意,銷量有20,30兩種情況.
當(dāng)銷量為20瓶時(shí),利潤(rùn)為5×20﹣65=35元,
當(dāng)銷量為30瓶時(shí),利潤(rùn)為5×30﹣65=85元.
隨機(jī)變量Y的分布列為:
Y | 35 | 85 |
P | 0.3 | 0.7 |
(2)根據(jù)(1)中的計(jì)算結(jié)果,所以E(X)=15×0.3+65×0.4+115×0.2+165×0.1=70(元),
所以E(Y)=35×0.3+85×0.7=70(元).E(X)=E(Y),
D(X)=,
D(Y)= ,所以D(X)>D(Y).
所以早餐店應(yīng)該批發(fā)一小箱.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中),(其中為自然對(duì)數(shù)的底數(shù)).
(1)若曲線在處的切線與直線垂直,求的單調(diào)區(qū)間和極值;
(2)若對(duì)任意,總存在使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,為常數(shù),函數(shù).
(1)當(dāng)時(shí),求關(guān)于的不等式的解集;
(2)當(dāng)時(shí),若函數(shù)在上存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)對(duì)于給定的,且,,證明:關(guān)于的方程在區(qū)間內(nèi)有一個(gè)實(shí)數(shù)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的離心率與雙曲線的離心率互為倒數(shù),且過點(diǎn).
(1)求橢圓C的方程;
(2)過作兩條直線與圓相切且分別交橢圓于M、N兩點(diǎn).
① 求證:直線MN的斜率為定值;
② 求△MON面積的最大值(其中O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面幾種推理是合情推理的是( )
①由圓的性質(zhì)類比出球的有關(guān)性質(zhì);
②由直角三角形、等腰三角形、等邊三角形內(nèi)角和是歸納出所有三角形的內(nèi)角和都是;③由,滿足,,推出是奇函數(shù);
④三角形內(nèi)角和是,四邊形內(nèi)角和是,五邊形內(nèi)角和是,由此得凸多邊形內(nèi)角和是.
A. ①②B. ①③④C. ②④D. ①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令.求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,數(shù)列滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿足,它的前項(xiàng)和為,
(。┣;
(ⅱ)若存在正整數(shù),使不等式成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列敘述錯(cuò)誤的是( )
A.已知直線和平面,若點(diǎn),點(diǎn)且,,則
B.若三條直線兩兩相交,則三條直線確定一個(gè)平面
C.若直線不平行于平面,且,則內(nèi)的所有直線與都不相交
D.若直線和不平行,且,,,則l至少與,中的一條相交
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com