已知函數(shù)
(Ⅰ).求函數(shù)的單調(diào)區(qū)間及
的取值范圍;
(Ⅱ).若函數(shù)有兩個(gè)極值點(diǎn)
求
的值.
(I)的增區(qū)間為
和
,減區(qū)間為
,
或
;(II)
解析試題分析:(I)求單調(diào)區(qū)間先求導(dǎo),
,解得
,
再令解得
,進(jìn)而得
的增區(qū)間為
和
,減區(qū)間為
.
(II)函數(shù)極值點(diǎn)即為導(dǎo)數(shù)零點(diǎn)得,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/12/d/taqwp.png" style="vertical-align:middle;" />
即解得
(舍)或
.
試題解析:(I),因?yàn)橛袠O值點(diǎn),所以
,解得
,
解得
,所以
的增區(qū)間為
和
,減區(qū)間為
.
(II)由(I)知,所以
解得,(舍)或
.
考點(diǎn):1.含參函數(shù)的單調(diào)區(qū)間、參數(shù)的取值范圍、在特定條件下參數(shù)的取值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)。
(1)求函數(shù)在
上的最小值;
(2)對(duì)一切,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
為自然對(duì)數(shù)的底,
(1)求的最值;
(2)若關(guān)于方程
有兩個(gè)不同解,求
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若曲線在
和
處的切線互相平行,求
的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),若對(duì)任意
,均存在
,使得
<
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
在
上為增函數(shù),且
,求解下列各題:
(1)求的取值范圍;
(2)若在
上為單調(diào)增函數(shù),求
的取值范圍;
(3)設(shè),若在
上至少存在一個(gè)
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)單調(diào)遞增區(qū)間;
(2)若存在,使得
是自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)(
為常數(shù))的圖象過原點(diǎn),且對(duì)任意
總有
成立;
(1)若的最大值等于1,求
的解析式;
(2)試比較與
的大小關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)。(
為常數(shù),
)
(Ⅰ)若是函數(shù)
的一個(gè)極值點(diǎn),求
的值;
(Ⅱ)求證:當(dāng)時(shí),
在
上是增函數(shù);
(Ⅲ)若對(duì)任意的,總存在
,使不等式
成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點(diǎn)的雙曲線的一個(gè)焦點(diǎn)是
,一條漸近線的方程是
.
(1)求雙曲線的方程;(2)若以
為斜率的直線
與雙曲線
相交于兩個(gè)不同的點(diǎn)
,且線段
的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為
,求
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com