14.已知定義在區(qū)間[-3,3]上的單調(diào)函數(shù)f(x)滿足:對任意的x∈[-3,3],都有f(f(x)-2x)=6,則在[-3,3]上隨機取一個實數(shù)x,使得f(x)的值不小于4的概率為( 。
A.$\frac{1}{6}$B.$\frac{5}{6}$C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 易知f(x)-2x是一個固定的數(shù)記為a,進而f(x)=a+2x,求出a,解不等式,即可得出結論.

解答 解:根據(jù)題意可知:f(x)-2x是一個固定的數(shù),記為a,則f(a)=6,
∴f(x)-2x=a,即f(x)=a+2x
∴當x=a時,
又∵a+2a=6,∴a=2,
∴f(x)=2+2x
由2+2x≥4,x∈[-3,3],可得x∈[1,3],區(qū)間長度為2,
∴在[-3,3]上隨機取一個實數(shù)x,使得f(x)的值不小于4的概率為$\frac{2}{6}$=$\frac{1}{3}$,
故選C.

點評 本題考查概率的計算,考查函數(shù)的性質,正確確定函數(shù)的解析式是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.已知關于x,y的二元一次方程組的增廣矩陣為$(\begin{array}{l}{2}&{1}&{5}\\{1}&{-2}&{0}\end{array})$,則3x-y=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知公差不為零的等差數(shù)列{an}中,a1=1,且a1,a3,a9成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設bn=2${\;}^{{a}_{n}}$+n,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若x∈[1,+∞)時,關于x的不等式$\frac{xlnx}{x+1}$≤λ(x-1)恒成立,則實數(shù)λ的取值范圍為[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.復數(shù)z=(a2-2a)+(a2-a-1)i的對應點在虛軸上,則實數(shù)a的值是0或2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知復數(shù)z=(3a+2i)(b-i)的實部為4,其中a、b為正實數(shù),則2a+b的最小值為( 。
A.2B.4C.$\frac{2\sqrt{3}}{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在區(qū)間$[-\sqrt{2},\sqrt{2}]$中隨機取一個實數(shù)k,則事件“直線y=kx與圓(x-3)2+y2=1相交”發(fā)生的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設函數(shù)f(x)=x2-2ex-$\frac{lnx}{x}$+a(其中e為自然對數(shù)的底數(shù),若函數(shù)f(x)至少存在一個零點,則實數(shù)a的取值范圍是( 。
A.$({0,{e^2}-\frac{1}{e}}]$B.$({0,{e^2}+\frac{1}{e}}]$C.$[{{e^2}-\frac{1}{e},+∞})$D.$({-∞,{e^2}+\frac{1}{e}}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知數(shù)列{an}的前n項和為${S_n},n∈{N^*}$,且${S_n}=\frac{3}{2}{a_n}-\frac{1}{2}$,
(1)求數(shù)列{an}的通項公式;
(2)若${b_n}=\frac{2n}{{{a_{n+2}}-{a_{n+1}}}}$,設數(shù)列{bn}的前n項和為${T_n},n∈{N^*}$,證明${T_n}<\frac{3}{4}$.

查看答案和解析>>

同步練習冊答案