已知x,y滿足
x≥1
x+y≤4
ax+by+c≤0
且目標函數(shù)z=2x+y的最大值為7,最小值為1,則
a+b+c
a
=(  )
A、2B、1C、-1D、-2
分析:先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,z=2x+y表示直線在y軸上的截距,只需求出可行域直線在y軸上的截距最大最小值時所在的頂點即可.
解答:精英家教網(wǎng)解:由題意得:
目標函數(shù)z=2x+y在點B取得最大值為7,
在點A處取得最小值為1,
∴A(1,-1),B(3,1),
∴直線AB的方程是:x-y-2=0,
∴則
a+b+c
a
=-2.
故選D.
點評:本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值的方法,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知x,y滿足
x≥1
x+2y≤4
ax+by+c≤0.
且目標函數(shù)z=x+y的最大值為3,最小值為-1,則
a+b+c
a
的值為
-1
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足
x-1≥0
x-y-1≤0
2x+y-5≤0
,則z=
y
x+2
的最大值為
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足x=
3-(y-2)2
,則
y+1
x+
3
的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足
x≤2
2x-y≥0
ax+by+c≥0
且目標函數(shù)z=y-3x的最大值為-1,最小值為-5,則
a+2b+3c
a
的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足
x-y+5≤0
x≤3
x+y+1≥0
,則z=
y+6
x
的取值范圍為( 。

查看答案和解析>>

同步練習冊答案