已知x,y滿(mǎn)足
x-y+5≤0
x≤3
x+y+1≥0
,則z=
y+6
x
的取值范圍為( 。
分析:本題屬于線(xiàn)性規(guī)劃中的延伸題,對(duì)于可行域不要求線(xiàn)性目標(biāo)函數(shù)的最值,而是求可行域內(nèi)的點(diǎn)與點(diǎn)(0,-6)構(gòu)成的直線(xiàn)的斜率范圍.
解答:解:不等式組
x-y+5≤0
x≤3
x+y+1≥0
表示的區(qū)域如圖,
z=
y+6
x
的幾何意義是可行域內(nèi)的點(diǎn)與點(diǎn)A(0,-6)構(gòu)成的直線(xiàn)的斜率問(wèn)題.
當(dāng)取得點(diǎn)B(3,-4)時(shí),
z=
y+6
x
取值為
2
3

當(dāng)取得點(diǎn)C(-3,2)時(shí),
z=
y+6
x
取值為-
8
3
,
∴滿(mǎn)足題意的z:z≤-
8
3
或z≥
2
3
,即:z∈(-∞,-
8
3
]∪[
2
3
,+∞).
故選:D.
點(diǎn)評(píng):本題利用直線(xiàn)斜率的幾何意義,求可行域中的點(diǎn)與點(diǎn)(0,-6)的斜率.本題主要考查了用平面區(qū)域二元一次不等式組,以及簡(jiǎn)單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.目標(biāo)函數(shù)有唯一最優(yōu)解是我們最常見(jiàn)的問(wèn)題,這類(lèi)問(wèn)題一般要分三步:畫(huà)出可行域、求出關(guān)鍵點(diǎn)、定出最優(yōu)解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿(mǎn)足
x-y+1≥0
x+y-2≥0
x≤2
,則目標(biāo)函數(shù)z=x-3y的最小值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿(mǎn)足
x-y≥-1
x+y≥1
3x-y≤3
,則z=2x-y的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿(mǎn)足
x+y≤1
y≤x
y≥0
,則z=x+3y的最大值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x、y滿(mǎn)足
x+y-1≥0
x≤1
y≤1
,則x2+y2的最小值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案