命題“存在x∈R,x3-x3+1>0”的否定是( 。
A、不存在x∈R,x3-x3+1≤0
B、存在x∈R,x3-x3+1≤0
C、對任意的x∈R,x3-x3+1≤0
D、對任意的x∈R,x3-x3+1>0
考點:命題的否定
專題:簡易邏輯
分析:根據(jù)特稱命題的否定是全稱命題即可得到結(jié)論
解答: 解:特稱命題的否定是全稱命題,
∴命題“存在x∈R,x3-x3+1>0”的否定是:對任意的x∈R,x3-x3+1≤0,
故選:C
點評:本題主要考查含有量詞的命題的否定,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用一平面去截球所得截面的面積為3πcm2,已知球心到該截面的距離為1cm,則該球的體積是
 
cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(1-x)5•(1+2x)4的展開式中,x2項的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點,P為雙曲線上的一點,若∠F1PF2=120°,且△F1PF2的三邊長成等差數(shù)列,則雙曲線的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)非空集合 S={x|a≤x≤b},滿足:當(dāng)x∈S時,有x2∈S.給出如下四個命題:
①若a=1,則S={1};
②存在實數(shù)a,b使得2∈S;
③若 a=-
1
2
,則
1
4
≤b≤1;
④若
1
2
∈S,則0∈S.
其中的真命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}滿足,8a2+a5=0,則公比q=(  )
A、2B、-2C、±2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,滿足2an+1=an+an+2,若 a2+a6+a10是一個定值,則下各數(shù)中也為定值( 。
A、S6
B、S11
C、S12
D、S13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

0<x<3是|x-1|<2成立的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=xlnx的導(dǎo)數(shù)是( 。
A、xB、lnx+1C、3xD、1

查看答案和解析>>

同步練習(xí)冊答案