在(1-x)5•(1+2x)4的展開式中,x2項的系數(shù)為
 
考點:二項式定理
專題:二項式定理
分析:把(1-x)5•(1+2x)4 按照二項式定理展開,可得x2項的系數(shù)為
C
2
4
•22
+(-5)×4×2+10,計算求得結(jié)果.
解答: 解:由于(1-x)5•(1+2x)4 =(1-5x+10x2-10x3+5x4-x5)[1+
C
1
4
•(2x)1
+
C
2
4
•(2x)2
+
C
2
4
•(2x)2
+
C
3
4
•(2x)3
+
C
4
4
•(2x)4
],
故x2項的系數(shù)為
C
2
4
•22
+(-5)×4×2+10=-6,
故答案為:-6.
點評:本題主要考查二項式定理的應(yīng)用,二項式系數(shù)的性質(zhì),二項式展開式的通項公式,求展開式中某項的系數(shù),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,設(shè)函數(shù)g(x)=lg2x-2algx+4,x∈[
1
10
,+∞) 的最小值為h(a)
(Ⅰ)求h(a)的表達式;
(Ⅱ)是否存在區(qū)間[m,n],使得函數(shù)h(a)在區(qū)間[m,n]上的值域為[2m,2n]?若存在,求出m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某三棱錐的三視圖如圖所示,則它的外接球的半徑為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y2=4x的焦點為F,準(zhǔn)線為l,A為拋物線上一點,AK⊥l,K為垂足,如果直線KF的斜率為-1,則△AKF的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下結(jié)論:
①在三角形ABC中,若a=5,b=8,C=60°,則
BC
CA
=20,
②已知正方形ABCD的邊長為1,則|
AB
+
BC
+
AC
|=2
2

③已知
AB
=
a
+5
b
,
BC
=-2
a
+8
b
CD
=3(
a
-
b
)則A,B,D三點共線.
其中正確結(jié)論的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={f(x,y)=0|f(x,y)=(x-a)2+(y-a)2-
a2
2
,a=±1,±2,±3},B={g(x,y)=0|g(x,y)=x+y-b,b=±1,±2,±3},則A中方程的曲線與B中方程的曲線的交點個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①直線2x-3y+1=0的一個方向向量是(2,-3);
②若直線l過拋物線y=2x2的焦點,且與這條拋物線交于A,B兩點,則|AB|的最小值
1
2
;
③若⊙C1:x2+y2+2x=0;⊙C2:x2+y2+2y-1=0,則這兩圓恰有2條公切線;
④若直線l1:a2x-y+6=0與直線l2:4x-(a-3)y+9=0互相垂直,則a=-1.
其中正確命題的序號是
 
.(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“存在x∈R,x3-x3+1>0”的否定是( 。
A、不存在x∈R,x3-x3+1≤0
B、存在x∈R,x3-x3+1≤0
C、對任意的x∈R,x3-x3+1≤0
D、對任意的x∈R,x3-x3+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b都是實數(shù),那么“a2>b2”是“a>b>0”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案