【題目】的內(nèi)角A,BC的對(duì)邊分別為a,bc,已知.

1)求C

2)若的面積為,求的周長(zhǎng);

3)若,求周長(zhǎng)的取值范圍;

4)若,求面積的取值范圍.

【答案】1;(2;(3;(4

【解析】

1)由正弦定理和三角恒等變換求得以及的值;

2)由三角形的面積公式和余弦定理,即可求出的周長(zhǎng);

3)利用正弦定理和三角恒等變換,結(jié)合三角函數(shù)的圖象與性質(zhì),即可求出周長(zhǎng)的取值范圍;

4)利用余弦定理和基本不等式求得面積的最大值,即可得出面積的取值范圍.

1中,,

由正弦定理可得:,

,,

,求得.

2)由的面積為,

,

,∴,

,利用余弦定理,可得,

,∴

的周長(zhǎng)為.

3)∵,,

由正弦定理得,,

的周長(zhǎng)為

,∴

,

,∴,

,,

周長(zhǎng)的取值范圍是.

4)由,

利用余弦定理可得:,

可得,當(dāng)且僅當(dāng)時(shí)取等號(hào),

面積的最大值為,

面積的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了保護(hù)環(huán)境,某工廠在政府部門(mén)的支持下,進(jìn)行技術(shù)改進(jìn):把二氧化碳轉(zhuǎn)化為某種化工產(chǎn)品,經(jīng)測(cè)算,該處理成本y(萬(wàn)元)與處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為:,且每處理一噸二氧化碳可得價(jià)值為20萬(wàn)元的某種化工產(chǎn)品.

(1)當(dāng)時(shí),判斷該技術(shù)改進(jìn)能否獲利?如果能獲利,求出最大利潤(rùn);如果不能獲利,則國(guó)家至少需要補(bǔ)貼多少萬(wàn)元,該工廠才不虧損?

(2)當(dāng)處理量為多少?lài)崟r(shí),每噸的平均處理成本最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】)計(jì)算:

①若是橢圓長(zhǎng)軸的兩個(gè)端點(diǎn),,則______;

②若是橢圓長(zhǎng)軸的兩個(gè)端點(diǎn),,則______

③若是橢圓長(zhǎng)軸的兩個(gè)端點(diǎn),,則______

)觀察①②③,由此可得到:若是橢圓長(zhǎng)軸的兩個(gè)端點(diǎn),為橢圓上任意一點(diǎn),則?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于以為公共焦點(diǎn)的橢圓和雙曲線(xiàn),設(shè)是它們的一個(gè)公共點(diǎn),分別為它們的離心率.,則的最大值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是兩個(gè)小區(qū)所在地,、到一條公路的垂直距離分別為,兩端之間的距離為.

1)某移動(dòng)公司將在之間找一點(diǎn),在處建造一個(gè)信號(hào)塔,使得對(duì)、的張角與對(duì)、的張角相等,試確定點(diǎn)的位置.

2)環(huán)保部門(mén)將在之間找一點(diǎn),在處建造一個(gè)垃圾處理廠,使得對(duì)、所張角最大,試確定點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)yfx)的定義域?yàn)?/span>R,并且滿(mǎn)足fx+y)=fx)+fy),f)=1,當(dāng)x>0時(shí),fx)>0.

(1)求f(0)的值;

(2)判斷函數(shù)的奇偶性;

(3)如果fx)+f(2+x)<2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店經(jīng)營(yíng)的消費(fèi)品進(jìn)價(jià)每件14元,月銷(xiāo)售量(百件)與銷(xiāo)售價(jià)格p(元)的關(guān)系如下圖,每月各種開(kāi)支2000.

(1)寫(xiě)出月銷(xiāo)售量(百件)與銷(xiāo)售價(jià)格p(元)的函數(shù)關(guān)系;

(2)寫(xiě)出月利潤(rùn)y(元)與銷(xiāo)售價(jià)格p(元)的函數(shù)關(guān)系:

(3)當(dāng)商品價(jià)格每件為多少元時(shí),月利潤(rùn)最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:

年份

2012

2013

2014

2015

2016

2017

年份代碼t

1

2

3

4

5

6

年產(chǎn)量y(萬(wàn)噸)

6.6

6.7

7

7.1

7.2

7.4

Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線(xiàn)性回歸方程

(Ⅱ)根據(jù)線(xiàn)性回歸方程預(yù)測(cè)2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

附:對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為:.(參考數(shù)據(jù):,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下列各組命題,其中的充分必要條件的是(

有兩個(gè)不同的零點(diǎn)

;是偶函數(shù);

;

,,

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案