17.已知函數(shù)f0(x)=$\frac{x}{{e}^{x}}$,設(shè)fn+1(x)為fn(x)的導(dǎo)函數(shù).
f1(x)=[f0(x)]′=$\frac{1-x}{{e}^{x}}$,
f2(x)=[f1(x)]′=$\frac{x-2}{{e}^{x}}$,
…,
根據(jù)以上結(jié)果,推斷f2017(x)=$\frac{2017-x}{e^x}$.

分析 根據(jù)導(dǎo)數(shù)得運(yùn)算法則,觀察結(jié)果,即可得到結(jié)論

解答 解:函數(shù)f0(x)=$\frac{x}{{e}^{x}}$,設(shè)fn+1(x)為fn(x)的導(dǎo)函數(shù).
f1(x)=[f0(x)]′=$\frac{1-x}{{e}^{x}}$
f2(x)=[f1(x)]′=$\frac{x-2}{{e}^{x}}$=-$\frac{2-x}{{e}^{x}}$
f3(x)=[f3(x)]′=$\frac{3-x}{{e}^{x}}$,
…,
根據(jù)以上結(jié)果,推斷f2017(x)=$\frac{2017-x}{e^x}$,
故答案為:$\frac{2017-x}{e^x}$

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算法則和歸納推理的問題,屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在平面直角坐標(biāo)系xOy中已知F1,F(xiàn)2分別為橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的左右焦點(diǎn),且橢圓經(jīng)過點(diǎn)A(2,0)和點(diǎn)(1,3e),其中e為橢圓E的離心率.
(1)求橢圓E的方程;
(2)點(diǎn)P為橢圓E上任意一點(diǎn),求PA2+PO2的最小值;
(3)過點(diǎn)A的直線l交橢圓E于另一點(diǎn)B,點(diǎn)M在直線l上,且OM=MA,若MF1⊥BF2,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.廣告投入對(duì)商品的銷售額有較大影響.某電商對(duì)連續(xù)5個(gè)年度的廣告費(fèi)和銷售額進(jìn)行統(tǒng)計(jì),得到統(tǒng)計(jì)數(shù)據(jù)如下表(單位:萬元)
廣告費(fèi)x23456
銷售額y2941505971
由上表可得回歸方程為$\stackrel{∧}{y}$=10.2x+$\stackrel{∧}{a}$,據(jù)此模型,預(yù)測(cè)廣告費(fèi)為8萬元時(shí)的銷售額約為(  )
A.90.8B.72.4C.98.2D.111.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(tanx)=cos2x,則f($\frac{\sqrt{3}}{2}$)的值是$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列結(jié)論正確的是( 。
A.當(dāng)x>0且x≠1時(shí),lgx$+\frac{1}{lgx}$≥2B.6$-x-\frac{4}{x}$的最大值是2
C.$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$的最小值是2D.當(dāng)x∈(0,π)時(shí),sinx$+\frac{4}{sinx}$≥5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題p“若x=2,則(x-2)(x+1)=0”,其否命題記為q,則下列命題中,真命題是( 。
A.¬pB.qC.p∧qD.p∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.下面(A)(B)(C)(D)為四個(gè)平面圖形:
(1)數(shù)出每個(gè)平面圖形的交點(diǎn)數(shù)、邊數(shù)、區(qū)域數(shù),并將下表補(bǔ)充完整:
  交點(diǎn)數(shù)邊數(shù) 區(qū)域數(shù) 
(A)  4 5 2
 (B) 5 8 
 (C)  12 5
 (D)  15 
(2)觀察表格,若記一個(gè)平面圖形的交點(diǎn)數(shù)、邊數(shù)、區(qū)域數(shù)分別為E、F、G,試猜想E、F、G之間的數(shù)量關(guān)系(不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項(xiàng)和為Sn,且${a_n}>0,{a_n}{S_n}={({\frac{1}{2}})^{2n}}({n∈{N^*}})$
(1)若bn=1+log2anSn,求數(shù)列{bn}的前n項(xiàng)和Tn
(2)若$0<{θ_n}<\frac{π}{2},{2^n}{a_n}=tan{θ_n}$,求證:數(shù)列{θn}是等比數(shù)列,并求其通項(xiàng)公式;
(3)記${c_n}=|{{a_1}-\frac{1}{2}}|+|{{a_2}-\frac{1}{2}}|+…+|{{a_n}-\frac{1}{2}}|$,若對(duì)任意的n∈N*,cn≥m恒成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.當(dāng)復(fù)數(shù)$z=\frac{{{m^2}+m-6}}{m}+({m^2}-2m)i$為純虛數(shù)時(shí),則實(shí)數(shù)m的值為( 。
A.m=2B.m=-3C.m=2或m=-3D.m=1或m=-3

查看答案和解析>>

同步練習(xí)冊(cè)答案