分析 (1)直接利用已知條件以及對數(shù)的運算法則,直接求出通項公式.然后求解前n項和.
(2)化簡2n•an=tanθn,通過an=Sn-Sn-1求出an,得到θn的函數(shù)關(guān)系式,然后證明數(shù)列{θn}為等比數(shù)列,求出其通項公式;
(3)化簡${c_n}=|{{a_1}-\frac{1}{2}}|+|{{a_2}-\frac{1}{2}}|+…+|{{a_n}-\frac{1}{2}}|$=$\frac{n}{2}$-(a1+a2+…+an)=$\frac{n}{2}$-Sn,利用函數(shù)的最值,求解實數(shù)m的最大值.
解答 解:(1)∵bn=1+log2(Sn•an)=1+log2($\frac{1}{2}$)2n=1-2n,
∴Tn=n-2(1+2+3+…+n)=n-n(n+1)=-n2
(2)由2nan=tanθn,可得an=$\frac{tan{θ}_{n}}{{2}^{n}}$,代入Snan=($\frac{1}{2}$)2,可得,Sn=$\frac{1}{{2}^{n}tan{θ}_{n}}$,
當n≥2時,an=Sn-Sn-1=$\frac{1}{{2}^{n}tan{θ}_{n}}$-$\frac{1}{{2}^{n-1}tan{θ}_{n-1}}$,
代入an=$\frac{tan{θ}_{n}}{{2}^{n}}$整理得tanθn-1=tan(2θn),
∵0<θn<$\frac{π}{2}$,
∴θn=$\frac{1}{2}$θn-1,
當n=1時,a1=$\frac{1}{2}$,
∴tanθ1=2a1=1,
∴θ1=$\frac{π}{4}$
∴數(shù)列{θn}是等比數(shù)列,首項為$\frac{π}{4}$,公比為$\frac{1}{2}$,
其通項公式為θn=$\frac{π}{{2}^{n+1}}$
(3)由(2)可得an=$\frac{tan(\frac{π}{{2}^{n+1}})}{{2}^{n}}$,它是個單調(diào)遞減的數(shù)列,
∴an≤a1=$\frac{1}{2}$,
∴an-$\frac{1}{2}$≤0,
∴${c_n}=|{{a_1}-\frac{1}{2}}|+|{{a_2}-\frac{1}{2}}|+…+|{{a_n}-\frac{1}{2}}|$=$\frac{n}{2}$-(a1+a2+…+an)=$\frac{n}{2}$-Sn,
∴Cn+1-Cn=$\frac{n+1}{2}$-Sn+1-$\frac{n}{2}$-Sn=$\frac{1}{2}$-an+1>0,
由知,cn+1≥cn,
∴數(shù)列{cn}是單調(diào)遞增的,cn最小值為c1=0,m≤(cn)min=0,
因此,實數(shù)m的取值范圍是(-∞,0],m的最大值為0
點評 本題考查數(shù)列與函數(shù)的綜合應(yīng)用,數(shù)列求和,等比數(shù)列的判斷,考查分析問題解決問題的能力
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $A_{100-n}^{80}$ | B. | $A_{100-n}^{20-n}$ | C. | $A_{100-n}^{81}$ | D. | $A_{20-n}^{81}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $3\sqrt{2}$ | B. | $3\sqrt{3}$ | C. | 18 | D. | 27 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 直角三角形 | B. | 等腰三角形 | C. | 等邊三角形 | D. | 鈍角三角形 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com