12.某城市2014年的空氣質(zhì)量狀況如表所示:
污染指數(shù)T3060100110130140
概率P$\frac{1}{10}$$\frac{1}{6}$$\frac{1}{3}$$\frac{7}{30}$$\frac{2}{15}$$\frac{1}{30}$
其中污染指數(shù)T≤50時,空氣質(zhì)量為優(yōu);50<T≤100時,空氣質(zhì)量為良;100<T≤150時,空氣質(zhì)量為輕微污染,則該城市2014年空氣質(zhì)量達到良或優(yōu)的概率為$\frac{3}{5}$.

分析 利用互斥事件概率加法公式能求出該城市2014年空氣質(zhì)量達到良或優(yōu)的概率.

解答 解:∵污染指數(shù)T≤50時,空氣質(zhì)量為優(yōu);50<T≤100時,空氣質(zhì)量為良,
∴該城市2014年空氣質(zhì)量達到良或優(yōu)的概率為:
P=P(T≤50)+P(50<T≤100)=$\frac{1}{10}+(\frac{1}{6}+\frac{1}{3})$=$\frac{3}{5}$.
故答案為:$\frac{3}{5}$.

點評 本題考查概率的求法,考查古典概型、互斥事件概率加法公式等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.設函數(shù)f(x)是定義在R上的增函數(shù),且f(x)≠0,對于任意的實數(shù)x,y都有f(x+y)=f(x)•f(y).
(1)求證:f(x)>0;
(2)若f(1)=2,解不等式:f(3x)>4f(x);
(3)由(1)及題設,寫出函數(shù)f(x)的一個模型.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=$\sqrt{3}$sinx+cosx在x0處取得最大值,則cos(x0-π)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.某種產(chǎn)品的廣告費用支出x萬元與銷售額y萬元之間如下的對應數(shù)據(jù):
24568
20305 05070
(Ⅰ)根據(jù)上表提供的數(shù)據(jù),求出y關于x的線性回歸返程;
(Ⅱ)據(jù)此估計廣告費用為10萬元時,所得的銷售收入.
參考公式:線性回歸方程:$\stackrel{∧}{y}$=$\stackrel{∧}$ x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\overline{xy}-\overline{x}\overline{y}}{\overline{{x}^{2}}-{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.盒中有4個白球,5個紅球,從中任取3個球,則抽出2個白球1個紅球的概率是( 。
A.$\frac{37}{42}$B.$\frac{17}{42}$C.$\frac{5}{14}$D.$\frac{17}{21}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知集合A={x|x+1>0},B={-2,-1,0,1},則(∁RA)∩B=( 。
A.{-2}B.{-2,-1}C.{-1,0,1}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.假設關于某設備的使用年限x和所支出的維修費用y(萬元),有如下的統(tǒng)計資料:
使用年限x23456
維修費用y2.23.85.56.57.0
若由資料知,y對x呈線性相關關系,試求:
(1)線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$的回歸系數(shù)a、b;
i12345合計
xi2345620
yi2.23.85.56.57.025
xiyi4.411.422.032.542112.3
?${x_i}^2$4916253690
?$\overline{x}=4$;?$\overline{y}=5$;?$\sum_{i=1}^n{{x_i}^2}=90$;$\sum_{i=1}^n{{x_i}{y_i}}=112.3$
(2)估計使用年限為10年時,維修費用是多少?
在線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中,$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.把一枚硬幣任意擲兩次,事件A=“第一次出現(xiàn)正面”,事件B=“第二次出現(xiàn)正面”,則P(B|A)=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.數(shù)列0,$\frac{2}{3}$,$\frac{4}{5}$,$\frac{6}{7}$…的一個通項公式為( 。
A.an=$\frac{2(n-1)}{2n-1}$B.an=$\frac{n-1}{2n+1}$C.an=$\frac{n-1}{n+1}$D.an=$\frac{2n}{3n+1}$

查看答案和解析>>

同步練習冊答案