17.已知集合A={x|x+1>0},B={-2,-1,0,1},則(∁RA)∩B=( 。
A.{-2}B.{-2,-1}C.{-1,0,1}D.{0,1}

分析 求出A中不等式的解集確定出A,求出A補集與B的交集即可.

解答 解:由A中不等式解得:x>-1,即A={x|x>-1},
∴∁RA={x|x≤-1},
∵B={-2,-1,0,1},
∴(∁RA)∩B={-2,-1},
故選:B.

點評 此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,PA=PC,∠APC=∠ACB=90°,∠BAC=60°,平面PAC⊥平面ABC.
(1)求證:面PAB⊥面PBC;
(2)求PB與面ABC所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為了解籃球愛好者小李的投籃命中率與打籃球時間之間的關(guān)系,下表記錄了小李某月1號到5號每天打籃球時間x單位:小時)與當(dāng)天投籃命中率y之間的關(guān)系:
時間x12345
命中率y0.40.50.60.60.4
(1)用線性回歸分析的方法求回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$.(2)預(yù)測小李該月6號打6小時籃球的投籃命中率.
$\left\{\begin{array}{l}{\stackrel{∧}=\frac{\sum_{i-1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i-1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{∧}{a}=\overline{y}-\stackrel{∧}\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一個各面均涂有油漆的正方體(魔方)被鋸成27個同樣大小的小正方體,將這些小正方體均勻的攪混在一起,現(xiàn)任意的取出一個小正方體,則事件“小正方體的三個面上有油漆”的概率是( 。
A.$\frac{12}{27}$B.$\frac{6}{27}$C.$\frac{1}{27}$D.$\frac{8}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某城市2014年的空氣質(zhì)量狀況如表所示:
污染指數(shù)T3060100110130140
概率P$\frac{1}{10}$$\frac{1}{6}$$\frac{1}{3}$$\frac{7}{30}$$\frac{2}{15}$$\frac{1}{30}$
其中污染指數(shù)T≤50時,空氣質(zhì)量為優(yōu);50<T≤100時,空氣質(zhì)量為良;100<T≤150時,空氣質(zhì)量為輕微污染,則該城市2014年空氣質(zhì)量達(dá)到良或優(yōu)的概率為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知集合A={x|-2≤x≤1},集合B={x|(x-a)(x-a-4)>0}
(1)當(dāng)a=0時,求A∪B
(2)命題p:x∈A,命題q:x∈B,若p是q成立的充分不必要條件,則實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,x),若$\overrightarrow{a}$∥$\overrightarrow$,則x=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.2016年春晚過后,為了研究演員上春晚次數(shù)與受關(guān)注度的關(guān)系,某站對其中一位經(jīng)常上春晚的演員上春晚次數(shù)與受關(guān)注度進(jìn)行了統(tǒng)計,得到如下數(shù)據(jù):
上春晚次數(shù)x(單位:次)246810
粉絲數(shù)量y(單位:萬人)10204080100
(Ⅰ)若該演員的粉絲數(shù)量y與上春晚次數(shù)x滿足線性回歸方程,試求回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,并就此分析:該演員上春晚11次時的粉絲數(shù)量;
(Ⅱ)若用$\frac{y_i}{x_i}$(i=1,2,3,4,5)表示統(tǒng)計數(shù)據(jù)時粉絲的“即時均值”(精確到整數(shù)):
(1)求這5次統(tǒng)計數(shù)據(jù)時粉絲的“即時均值”的方差;
(2)從“即時均值”中任選2組,求這兩組數(shù)據(jù)之和不超過15的概率.
參考公式:$\begin{array}{l}用最小二乘法求線性回歸方程系數(shù)公式:\\ \widehatb=\frac{{\sum_{i-1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i-1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i-1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i-1}^n{{{({{x_i}-\overline x})}^2}}}},\widehata=\overline y-b\overline x\end{array}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”,如圖是根據(jù)調(diào)查結(jié)果得到的2×2列聯(lián)表.
(Ⅰ)補全2×2列聯(lián)表,并據(jù)此資料判斷你是否有95%以上的把握認(rèn)為“體育迷”與性別有關(guān)?
(Ⅱ)將日均收看該體育項目不低于50分鐘的觀眾稱為“超級體育迷”,已知有5名“超級體育迷”,其中3名男性2名女性,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率.
非體育迷體育迷合計
3015
451055
合計100
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量
 P(K2≥k) 0.05 0.01
 k 3.841 6.0635

查看答案和解析>>

同步練習(xí)冊答案