分析 (1)由ρsin(θ-\frac{π}{3})=\sqrt{3},展開ρsinθ-\sqrt{3}ρcosθ=2\sqrt{3},利用互化公式即可得出直線l的直角坐標(biāo)方程.曲線C:\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.,且參數(shù)α∈[0,2π],利用三角函數(shù)基本關(guān)系式的平方關(guān)系消去參數(shù)α可知曲線C的普通方程.
(2)由(1)點(diǎn)P的軌跡方程為(x-2)2+y2=4,圓心為C(2,0),半徑為2.利用點(diǎn)到直線的距離公式可得圓心C到直線l的距離d,可得點(diǎn)P到直線l距離的最大值為d+r.
解答 解:(1)∵ρsin(θ-\frac{π}{3})=\sqrt{3},∴ρsinθ-\sqrt{3}ρcosθ=2\sqrt{3},
∴直線l的直角坐標(biāo)方程為:y-\sqrt{3}x=2\sqrt{3}.
曲線C:\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.,且參數(shù)α∈[0,2π],
消去參數(shù)α可知曲線C的普通方程為:(x-2)2+y2=4.
(2)由(1)點(diǎn)P的軌跡方程為(x-2)2+y2=4,圓心為C(2,0),半徑為2.
圓心C到直線l的距離d=\frac{|2\sqrt{3}-0+2\sqrt{3}|}{\sqrt{(\sqrt{3})^{2}+1}}=2\sqrt{3},
∴點(diǎn)P到直線l距離的最大值為2\sqrt{3}+2.
點(diǎn)評(píng) 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)方程化為普通方程、點(diǎn)到直線的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | \frac{1}{2} | B. | \frac{\sqrt{3}}{4} | C. | \frac{3}{4} | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com