分析 (Ⅰ)設(shè)g(x)=ax(a>0且a≠1),由a3=8解得a=2.故g(x)=2x.再根據(jù)函數(shù)是奇函數(shù),求出m、n的值,得到f(x)的解析式;
(Ⅱ)根據(jù)零點(diǎn)存在定理得到h(-1)h(1)<0,解得即可;
(Ⅲ)根據(jù)函數(shù)為奇函數(shù)和減函數(shù),轉(zhuǎn)化為即對(duì)一切t∈(1,4),有3t-3<k恒成立,再利用函數(shù)的單調(diào)性求出函數(shù)的最值即可.
解答 解:(Ⅰ)設(shè)g(x)=ax(a>0且a≠1),∵g(3)=8,∴a3=8,解得a=2.∴g(x)=2x.
∴f(x)=$\frac{n-{2}^{x}}{m+{2}^{x+1}}$,
∵函數(shù)f(x)是定義域?yàn)镽的奇函數(shù),∴f(0)=0,∴$\frac{n-1}{2+m}$=0,∴n=1,∴f(x)=$\frac{1-{2}^{x}}{{2}^{x+1}+m}$
又f(-1)=f(1),∴$\frac{1-\frac{1}{2}}{m+1}$=-$\frac{1-2}{4+m}$,解得m=2
∴f(x)=$\frac{1-{2}^{x}}{2+{2}^{x+1}}$,
(Ⅱ)由(Ⅰ)知f(x)=$\frac{1-{2}^{x}}{2+{2}^{x+1}}$=-$\frac{1}{2}$+$\frac{1}{{2}^{x}+1}$,又h(x)=f(x)+a在(-1,1)上有零點(diǎn),
從而h(-1)h(1)<0,即(-$\frac{1}{2}$+$\frac{1}{\frac{1}{2}+1}$+a)($-\frac{1}{2}$+$\frac{1}{2+1}$+a)<0,
∴(a+$\frac{1}{6}$)(a-$\frac{1}{6}$)<0,
∴-$\frac{1}{6}$<a<$\frac{1}{6}$,
∴a的取值范圍為(-$\frac{1}{6}$,$\frac{1}{6}$);
(Ⅲ)由(Ⅰ)知f(x)=$\frac{1-{2}^{x}}{2+{2}^{x+1}}$=-$\frac{1}{2}$+$\frac{1}{{2}^{x}+1}$,
易知f(x)在R上為減函數(shù),
又f(x)是奇函數(shù),
∴f(2t-3)+f(t-k)>0,
∴f(2t-3)>-f(t-k)=f(k-t),
∵f(x)在R上為減函數(shù),由上式得2t-3<k-t,
即對(duì)一切t∈(1,4),有3t-3<k恒成立,
令m(t)=3t-3,t∈(1,4),
易知m(t)在(1,4)上遞增,
m(t)<3×4-3=9,
∴k≥9,
即實(shí)數(shù)k的取值范圍是[9,+∞).
點(diǎn)評(píng) 本題綜合考查了指數(shù)函數(shù)的定義及其性質(zhì)、函數(shù)的奇偶性、單調(diào)性、恒成立問題的等價(jià)轉(zhuǎn)化、屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若f(x)為增函數(shù),g(x)為增函數(shù),則f(x)+g(x)為增函數(shù) | |
B. | 若f(x)為減函數(shù),g(x)為增函數(shù),則f(x)-g(x)為減函數(shù) | |
C. | 若f(x)為奇函數(shù),g(x)為偶函數(shù),則f(x)-g(x)為奇函數(shù) | |
D. | 若f(x)為奇函數(shù),g(x)為偶函數(shù),則|f(x)|-g(x)為偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a-$\frac{3}{2}$ | B. | 0 | C. | 2a-3 | D. | -2a+3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com