16.在等差數(shù)列{an}中,an=41-2n,則當(dāng)數(shù)列{an}的前n項(xiàng)和Sn取最大值時(shí)n的值等于( 。
A.21B.20C.19D.18

分析 令an=41-2n>0解得n<20.5,所以數(shù)列的前20項(xiàng)大于0,第21項(xiàng)小于0,21 項(xiàng)后面的小于0.所以數(shù)列的前20項(xiàng)的和最大.

解答 解:令an=41-2n>0解得n<20.5,
所以數(shù)列的前20項(xiàng)大于0,第20項(xiàng)后面的小于0.
所以數(shù)列的前20項(xiàng)和最大.
故選:B.

點(diǎn)評(píng) 本題主要考查數(shù)列的函數(shù)特性、數(shù)列的性質(zhì)及數(shù)列的最值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如果直線y=ax+2與直線y=3x+b關(guān)于直線y=x對(duì)稱,那么a,b的值分別是( 。
A.$\frac{1}{3}$,6B.$\frac{1}{3}$,-6C.3,-2D.3,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知等比數(shù)列{an}為遞增數(shù)列.若a1>0,且2(a4+a6)=5a5,則數(shù)列{an}的公比q=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.現(xiàn)有兩個(gè)一元二次函數(shù)f(x),g(x)及實(shí)數(shù)t(t>0)滿足以下條件:
①f(x)+g(x)=x2+16x+13;②g(t)=25;③當(dāng)x=t時(shí),f(x)有最大值5;④g(x)的最小值為-2.
(1)求g(x)的解析式和t的值;
(2)設(shè)h(x)=|g(x)-10|,求h(x)在區(qū)間[a-4,a]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=(2cos2x-1)sin2x+$\frac{1}{2}$cos4x.
(1)求f(x)的最小正周期及單調(diào)減區(qū)間;
(2)若α∈(0,π),且f($\frac{α}{4}$-$\frac{π}{8}$)=$\frac{\sqrt{2}}{2}$,求tan(α+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=loga(ax-1)(a>0且a≠1)
(1)求f(x)的定義域;
(2)討論f(x)的單調(diào)性;(不用證明)
(3)求f(x)在區(qū)間[1,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)數(shù)列{an}的通項(xiàng)公式是an=xn,則數(shù)列{an}的前n項(xiàng)和Sn=$\left\{\begin{array}{l}{0,x=0}\\{n,x=1}\\{\frac{x(1-{x}^{n})}{1-x},x≠0且x≠1}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知2$\overrightarrow{a}$+$\overrightarrow$=(0,-5,10),$\overrightarrow{c}$=(1,-2,-2),$\overrightarrow{a}$•$\overrightarrow{c}$=4,|$\overrightarrow$|=12,則以$\overrightarrow$,$\overrightarrow{c}$為方向向量的兩直線的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=cos($\frac{π}{3}$+x)cos($\frac{π}{3}$-x)-sinxcosx+$\frac{1}{4}$,
(1)求函數(shù)f(x)的對(duì)稱軸所在直線的方程;
(2)求函數(shù)f(x)單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案