計(jì)算1+2+3+…+100的值有如下算法:
第一步,令i=1,S=0
第二步,計(jì)算S+i,仍用S表示.
第三步,計(jì)算i+1,仍用i表示
第四步,判斷i>100是否成立,若是,則輸出S,結(jié)束算法;
否則返回第二步.
請(qǐng)利用UNTIL語句寫出這個(gè)算法對(duì)應(yīng)的程序.
考點(diǎn):設(shè)計(jì)程序框圖解決實(shí)際問題
專題:算法和程序框圖
分析:根據(jù)已知中程序的功能是計(jì)算1+2+3+…+100的值的算法語句.可知循環(huán)變量初值為1,步長(zhǎng)為1,終值為100,結(jié)合“DO LOOP”語句的格式,可得答案.
解答: 解:用UNTIL語句編寫計(jì)算1+2+3+…100的程序如下:
S=0
i=1
Do
   S=S+i
   i=i+1
Loop UNTIL i>100
PRINT
點(diǎn)評(píng):本題主要考查了循環(huán)結(jié)構(gòu),以及“DO LOOP”語句的運(yùn)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|
1
3
<3x<9},B={x|log2x<2}.
(1)求A∩B和A∪B;
(2)定義A-B={x|x∈A且x∉B},直接寫出A-B和B-A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1,an=
Sn
+
Sn-1
(n≥2),分別求出S1,S2,S3,S4,通過歸納猜想得到Sn=( 。
A、2n-1
B、n2
C、n
D、2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不論k為何值,直線y=k(x-2)+b與曲線x2+y2=9總有公共點(diǎn),則b的取值范圍是( 。
A、(-2,2)
B、[-2,2]
C、(-
5
,
5
D、[-
5
,
5
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等腰三角形的底邊為a,腰長(zhǎng)為2a,則腰上的中線長(zhǎng)等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是偶函數(shù),當(dāng)x≥0時(shí),有f(x)=x2-4x,且當(dāng)x∈[-3,-
3
2
]時(shí),f(x)的值域是[n,m],則m-n的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法錯(cuò)誤的是(  )
A、命題“?x∈R,x2-2x=0”的否定是“?x∈R,x2-2x≠0”
B、命題“若m>0,則方程x2+x-m=0有實(shí)根”的逆否命題為真命題
C、若命題“p∧q”為真命題,則“p∨q”為真命題
D、“x>1”是“|x|>0”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過圓x2+y2=25上一點(diǎn)P(4,3),并與該圓相切的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示的程序框圖,則該算法的功能是( 。
A、計(jì)算數(shù)列{2n-1}前5項(xiàng)的和
B、計(jì)算數(shù)列{2n-1}前5項(xiàng)的和
C、計(jì)算數(shù)列{2n-1}前6項(xiàng)的和
D、計(jì)算數(shù)列{2n-1}前6項(xiàng)的和

查看答案和解析>>

同步練習(xí)冊(cè)答案