5.在正三棱錐P-ABC中,E、F分別為棱PA、AB的中點(diǎn),且EF⊥CE.
(1)求證:直線PB∥平面EFC;
(2)求證:平面PAC⊥平面PAB.

分析 (1)證明EF∥PB,然后利用直線與平面平行的判定定理證明直線PB∥平面EFC.
(2)取棱AC的中點(diǎn)為D,連接PD,BD證明AC⊥PB,推出AC⊥EF,然后證明EF⊥平面PAC,即可證明面PAC⊥平面PAB.

解答 (本小題滿分10分)
證明:(1)∵E,F(xiàn)分別為棱PA、AB的中點(diǎn),∴EF∥PB…(1分)
∵EF?平面EFC,PB?平面EFC…(2分)
∴直線PB∥平面EFC;…(3分)
(2)取棱AC的中點(diǎn)為D,連接PD,BD,…(4分)
∵三棱錐P-ABC是正三棱錐,∴PA=PC,BA=BC,
∴PD⊥AC,BD⊥AC∵PD∩BD=D,
∴AC⊥平面PDB∵PB?平面PDB,∴AC⊥PB…(7分)
由(1)知EF∥PB,∴AC⊥EF,
∵EF⊥CE,CE∩AC=C,AC?平面PAC,CE?平面PAC,
∴EF⊥平面PAC,…(9分)
∵EF?平面PAB,
∴平面PAC⊥平面PAB…(10分)

點(diǎn)評(píng) 本題排除直線與平面平行的判定定理以及平面與平面垂直的判定定理的應(yīng)用,考查空間想象能力以及邏輯推理能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知點(diǎn)P為圓C:(x-1)2+(y-1)2=2上的動(dòng)點(diǎn),則P點(diǎn)到直線l:x-y+4=0的距離的最小值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.用反證法證明“?x∈R,2x>0”,應(yīng)假設(shè)為( 。
A.?x0∈R,${2^{x_0}}$>0B.?x0∈R,${2^{x_0}}$<0C.?x∈R,2x≤0D.?x0∈R,${2^{x_0}}$≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知x∈(0,+∞),觀察下列式子:$x+\frac{1}{x}≥2$,$x+\frac{4}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{4}{x^2}≥3$,$x+\frac{27}{x^3}=\frac{x}{3}+\frac{x}{3}+\frac{x}{3}+\frac{27}{x^3}≥4$…,歸納得第四個(gè)式子為$x+\frac{256}{x^4}=\frac{x}{4}+\frac{x}{4}+\frac{x}{4}+\frac{x}{4}+\frac{256}{x^4}≥5$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}的相鄰兩項(xiàng)an,an+1是關(guān)于x的方程x2-2nx+A=0的兩根,且a1=1.
(1)求證:數(shù)列$\{{a_n}-\frac{1}{3}•{2^n}\}$是等比數(shù)列;
(2)若${b_n}={log_2}[3{a_n}+{(-1)^n}]$,證明:對(duì)一切正整數(shù)n,有$\frac{1}{{{b_1}({b_1}+2)}}+\frac{1}{{{b_2}({b_2}+2)}}+…+$$\frac{1}{{{b_n}({b_n}+2)}}<\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且bcosC+ccosB=2acosB.
(I)求角B的大。
(II)若函數(shù)f(x)=2cos2x+sin(2x+B)+sin(2x-B)-1,x∈R.
(i)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(ii)求函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若集合A={x|x=2k-1,k∈Z},B={x|x=4l±1,l∈Z},則( 。
A.A?BB.B?AC.A=BD.A∪B=Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知向量$\overrightarrow a$=(1,$\sqrt{3}}$),$\overrightarrow b$=(3,m),向量$\overrightarrow a$∥$\overrightarrow b$,則實(shí)數(shù)m=( 。
A.2$\sqrt{3}$B.3$\sqrt{3}$C.-3$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)的定義域?yàn)镽,對(duì)任意實(shí)數(shù)m、n,均有f(m+n)=f(m)+f(n)-1,且f($\frac{1}{2}$)=2,當(dāng)x>-$\frac{1}{2}$時(shí)有f(x)>0
(1)求f(-$\frac{1}{2}$)的值;
(2)判斷f(x)在R上的單調(diào)性,并加以證明;
(3)解關(guān)于x的不等式:1+f(x2+1)≤f(1)+f(2|x|)

查看答案和解析>>

同步練習(xí)冊(cè)答案