已知數(shù)列{an}是首項(xiàng)為1,公差為d的等差數(shù)列;數(shù)列{bn}是公比為2的等比數(shù)列,且{bn}的前4項(xiàng)的和為
15
2

(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)若d=3,求數(shù)列{an}中滿足b8≤ai≤b9(i∈N*)的所有項(xiàng)ai的和;
(3)設(shè)數(shù)列{cn}滿足cn=an•bn,數(shù)列{cn}的前n項(xiàng)和為T(mén)n,若Tn的最大值為T(mén)5,求公差d的取值范圍.
考點(diǎn):數(shù)列的求和,數(shù)列的應(yīng)用
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件得b1+2b1+4b1+8b1=
15
2
,由此能求出bn=2n-2
(2)b8=26=64,b9=27=128,an=3n-2,由b8≤ai≤b9(i∈N*),得64≤3i-2≤128,從而得到22≤i≤43,由此能求出滿足條件的所有項(xiàng)ai的和.
(3)由已知條件得cn=an•bn>0,此時(shí)Tn無(wú)最大項(xiàng),d<0,{an}單調(diào)遞減,由此能求出公差d的取值范圍.
解答: 解:(1)∵數(shù)列{bn}是公比為2的等比數(shù)列,且{bn}的前4項(xiàng)的和為
15
2

b1+2b1+4b1+8b1=
15
2
,
解得b1=
1
2
,
∴bn=2n-2.…(5分)
(2)b8=26=64,b9=27=128,
∵數(shù)列{an}是首項(xiàng)為1,公差為3的等差數(shù)列,
∴an=3n-2
∵b8≤ai≤b9(i∈N*),∴64≤3i-2≤128,
解得,22≤i≤
130
3
,
又i屬于N*,22≤i≤43,
a22=64,a43=127,
∴S=a22+a23+…+a43
=
22
2
(64+127)=2101,
∴滿足條件的所有項(xiàng)ai的和為2101.…(12分)
(3)∵bn=2n-1>0,若d≥0,則an>0,
∴cn=an•bn>0,此時(shí)Tn無(wú)最大項(xiàng),
∴d<0,…(12分)
此時(shí){an}單調(diào)遞減,欲Tn的最大項(xiàng)為T(mén)5
則必有c5≥0,c6≤0,即a5≥0,a6≤0,…(14分)
又an=1+(n-1)d,∴
1+4d≥0
1+5d≤0
,
解得-
1
4
≤d≤-
1
5
.…(16分)
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=2x3-9x2+12x分別在x1,x2處取得極小值,極大值.xoy平面上點(diǎn)A,B的坐標(biāo)分別是(x1,f(x1)),(x2,f(x2)).
(1)求點(diǎn)A,B的坐標(biāo);
(2)該平面上動(dòng)點(diǎn)P滿足
PA
PB
=4,求P點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算求值:
(1)計(jì)算
π
2
0
(sin
x
2
+cos
x
2
2dx;
(2)已知復(fù)數(shù)z滿足z•
.
z
-i(
.
3z
)=1-(
.
3i
),求z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=3,an+1=an+3n2+3n+2-
1
n(n+1)
,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:
1
a1
+
1
a2
+…+
1
an
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x1,x2,…,xn(n∈N*,n>100)的平均數(shù)是
.
x
,方差是s2
(Ⅰ)求數(shù)據(jù)3x1+2,3x2+2,…,3xn+2的平均數(shù)和方差;
(Ⅱ)若a是x1,x2,…,x100的平均數(shù),b是x101,x102,…,xn的平均數(shù).試用a,b,n表示
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是一個(gè)公差大于0的等差數(shù)列,且滿足a3a6=55,a2+a7=16.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
1
anan+1
,求數(shù)列{bn}的前項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,線段F1F2被拋物線y2=2bx的焦點(diǎn)分成3:1的兩段,過(guò)點(diǎn)C(-1,0),斜率k為的直線l交橢圓于不同兩點(diǎn)A、B,滿足
AC
=2
CB

(1)求橢圓的離心率;
(2)當(dāng)三角形OAB的面積最大時(shí),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(x2+
2
x
6的展開(kāi)式中,常數(shù)項(xiàng)的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等差數(shù)列{an}的公差d≠0,且a2、a5、a14恰成公比為q的等比數(shù)列,則q=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案