若函數(shù)f(x)=
ax,x>1
(2-3a)x+1,x≤1
是R上的減函數(shù),則實數(shù)a的取值范圍是(  )
分析:根據(jù)分段函數(shù)f(x)=
ax,x>1
(2-3a)x+1,x≤1
是R上的減函數(shù),可得各段上函數(shù)均為減函數(shù),且在分界點x=1處,前一段的函數(shù)值不小于后一段的函數(shù)值.
解答:解:若函數(shù)f(x)=
ax,x>1
(2-3a)x+1,x≤1
是R上的減函數(shù),
0<a<1
2-3a<0
a≤2-3a+1
,解得a∈(
2
3
,
3
4
]

故選C
點評:本題考查的知識點是函數(shù)單調(diào)性的性質(zhì),分段函數(shù)的單調(diào)性,其中根據(jù)分段函數(shù)單調(diào)性的性質(zhì),構(gòu)造不等式組是解答的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列三個命題:
①若函數(shù)f(x)=sin(2x+φ)的圖象關(guān)于y軸對稱,則φ=
π
2
;
②若函數(shù)f(x)=
ax-2
x-1
的圖象關(guān)于點(1,1)對稱,則a=1;
③函數(shù)f(x)=|x|+|x-2|的圖象關(guān)于直線x=1對稱.
其中真命題的序號是
 
.(把真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>1,若函數(shù)f(x)=
ax,-1<x≤1
f(x-2)+a-1,1<x≤3
,則f[f(x)]-a=0的根的個數(shù)最多有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
ax,(x>1)
(4-
a
2
)x+2,(x≤1)
是R上的單調(diào)函數(shù),則實數(shù)a取值范圍為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•資陽一模)已知函數(shù)f(x)=2lnx-x2+ax,a∈R.
(1)當a=2時,求函數(shù)f(x)的圖象在x=1處的切線的方程;
(2)若函數(shù)f(x)-ax+m=0在[
1e
,e]
上有兩個不等的實數(shù)根,求實數(shù)m的取值范圍;
(3)若函數(shù)f(x)的圖象與x軸交于不同的點A(x1,0),B(x2,0),且0<x1<x2,求證:f′(px1+qx2)<0(其中實數(shù)p,q滿足0<p≤q,p+q=1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
ax(x>1)
(4-
a
2
)x+2(x≤1)
對于R上的任意x1≠x2都有
f(x1)-f(x2)
x1-x2
>0
,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案