【題目】考拉茲猜想又名3n+1猜想,是指對(duì)于每一個(gè)正整數(shù),如果它是奇數(shù),則對(duì)它乘3再加1;如果它是偶數(shù),則對(duì)它除以2.如此循環(huán),最終都能得到1.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)程序,輸出的結(jié)果i=( )
A.4
B.5
C.6
D.7
【答案】B
【解析】解:當(dāng)a=4時(shí),不滿足退出循環(huán)的條件,進(jìn)入循環(huán)后,由于a值不滿足“a是奇數(shù)”,故a=5,i=2; 當(dāng)a=5時(shí),不滿足退出循環(huán)的條件,進(jìn)入循環(huán)后,由于a值滿足“a是奇數(shù)”,故a=16,i=3;
當(dāng)a=16時(shí),不滿足退出循環(huán)的條件,進(jìn)入循環(huán)后,由于a值不滿足“a是奇數(shù)”,故a=8,i=4;
當(dāng)a=8時(shí),不滿足退出循環(huán)的條件,進(jìn)入循環(huán)后,由于a值不滿足“a是奇數(shù)”,故a=4,i=5;
當(dāng)a=4時(shí),滿足退出循環(huán)的條件,故輸出結(jié)果為:5
故選B.
由已知中的程序框圖可知:該程序的功能是利用條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)的嵌套計(jì)算并輸出i值,模擬程序的運(yùn)行過程可得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且當(dāng)x>0時(shí),f(x)=lg ,若對(duì)任意實(shí)數(shù)t∈[ ,2],都有f(t+a)﹣f(t﹣1)≥0恒成立,則實(shí)數(shù)a的取值范圍 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 在 上有最大值1和最小值0,設(shè) .
(1)求 的值;
(2)若不等式 在 上有解,求實(shí)數(shù) 的取值范圍;
(3)若方程 ( 為自然對(duì)數(shù)的底數(shù))有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為響應(yīng)國家節(jié)能減排建設(shè)的號(hào)召,喚起人們從自己身邊的小事做起,開展了以“再小的力量也是一種支持”為主題的宣傳教育活動(dòng),其中有兩則公益廣告: ①80部手機(jī),一年就會(huì)增加一噸二氧化氮的排放.
②人們?cè)谙硎芷噹Я说谋憬菔孢m的同時(shí),卻不得不呼吸汽車排放的尾氣.
活動(dòng)組織者為了解是市民對(duì)這兩則廣告的宣傳效果,隨機(jī)對(duì)10﹣60歲的人群抽查了n人,并就兩個(gè)問題對(duì)選取的市民進(jìn)行提問,其抽樣人數(shù)頻率分布直方圖如圖所示,宣傳效果調(diào)查結(jié)果如表所示.
宣傳效果調(diào)查表
廣告一 | 廣告二 | |||
回答正 | 占本組 | 回答正 | 占本組 | |
[10,20) | 90 | 0.5 | 45 | a |
[20,30) | 225 | 0.75 | k | 0.8 |
[30,40) | b | 0.9 | 252 | 0.6 |
[40,50) | 160 | c | 120 | d |
[50,60] | 10 | e | f | g |
(1)分別寫出n,a,b,c,d的值.
(2)若將表中的頻率近似看作各年齡組正確回答廣告內(nèi)容的概率,規(guī)定正確回答廣告一的內(nèi)容得30元,廣告二的內(nèi)容得60元.組織者隨機(jī)請(qǐng)一家庭的兩成員(大人45歲,孩子17歲),指定大人回答廣告一的內(nèi)容,孩子回答廣告二的內(nèi)容,求該家庭獲得獎(jiǎng)金數(shù)ξ的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,且
(1)當(dāng) 時(shí),解不等式 ;
(2) 在 恒成立,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,李先生家住H小區(qū),他工作在C科技園區(qū),從家開車到公司上班路上有L1、L2兩條路線,L1路線上有A1、A2、A3三個(gè)路口,各路口遇到紅燈的概率均為 ;L2路線上有B1、B2兩個(gè)路口,各路口遇到紅燈的概率依次為 , .
(1)若走L1路線,求最多遇到1次紅燈的概率;
(2)若走L2路線,求遇到紅燈次數(shù)X的數(shù)學(xué)期望;
(3)按照“平均遇到紅燈次數(shù)最少”的要求,請(qǐng)你幫助李先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠A,∠B,∠C所對(duì)的邊分別是a,b,c,M為BC的中點(diǎn),BM=MC=2,AM=b﹣c,則△ABC面積最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(2,-1).
(1)求過P點(diǎn)且與原點(diǎn)距離為2的直線l的方程;
(2)求過P點(diǎn)且與原點(diǎn)距離最大的直線l的方程,最大距離是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com