3.根據(jù)下列五個點(195,2),(197,3),(200,6),(203,8),(205,m),所求得的線性回歸方程$\stackrel{∧}{y}$=0.8x-154,則實數(shù)m的值為( 。
A.9B.10C.11D.12

分析 計算$\overline{x}$,代入回歸方程求出$\overline{y}$,即可列方程解出m.

解答 解:$\overline{x}$=$\frac{195+197+200+203+205}{5}$=200,
∴$\overline{y}$=0.8×200-154=6.
∴$\frac{2+3+6+8+m}{5}=6$,解得m=11.
故選C.

點評 本題考查了線性回歸方程經(jīng)過樣本中心的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在四棱錐P-ABCD中,AB∥CD,AB⊥AD,PA=AB=2CD=4,$PB=2AD=4\sqrt{2}$,平面PAB⊥平面ABCD.
(1)求證:BD⊥平面PAC;
(2)求二面角A-PC-D的余弦值;
(3)設(shè)點Q為線段PB上一點,且直線QC與平面PAC所成角的正弦值為$\frac{{\sqrt{3}}}{3}$,求$\frac{PQ}{PB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若1≤x≤4,3≤y≤6,則$\frac{x}{y}$的取值范圍是(  )
A.$[\frac{1}{3},\frac{2}{3}]$B.$[\frac{1}{6},\frac{4}{3}]$C.$[\frac{1}{3},\frac{4}{3}]$D.$[\frac{2}{3},\frac{4}{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=ax3+bx+c(a>0)為奇函數(shù),其圖象在點(1,f(1))處的切線與直線x-3y-1=0垂直,導(dǎo)函數(shù)f′(x)的最小值為-6,求a、b、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.100件產(chǎn)品中有3件次品,不放回地抽取2次,每次抽1件.已知第1次抽出的是次品,則第2次抽出正品的概率是$\frac{97}{99}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期
溫差
12月1日12月2日12月3日12月4日12月5日
x(℃)101113128
發(fā)芽數(shù)y(顆)2325302616
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(1)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=bx+a;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性方程是可靠地,試問(2)中所得到的線性方程是否可靠?
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某班主任對班級51名同學(xué)進(jìn)行了作業(yè)量多少的調(diào)查,結(jié)合數(shù)據(jù)建立了一個2×2列聯(lián)表:
認(rèn)為作業(yè)多認(rèn)為作業(yè)不多總計
喜歡玩電腦游戲181230
不喜歡玩電腦游戲51621
總計232851
(可能用到的公式:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}n_{+1}n_{+2}}$,可能用到的數(shù)據(jù):P(X2≥6.635)=0.01,P(X2≥3.841)=0.05)參照以上公式和數(shù)據(jù),得到的正確結(jié)論是(  )
A.有95%的把握認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)多少有關(guān)
B.有95%的把握認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)多少無關(guān)
C.有99%的把握認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)多少有關(guān)
D.有99%的把握認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)多少無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,在△ABC中,|AB|=4,點E為AB的中點,點D為線段AB垂直平分線上的一點,且|DE|=3,固定邊AB,在平面ABD內(nèi)移動頂點C,使得△ABC的內(nèi)切圓始終與AB切于線段BE的中點,且C、D在直線AB的同側(cè),在移動過程中,當(dāng)|CA|+|CD|取得最小值時,點C到直線DE的距離為$2\sqrt{15}-6$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.現(xiàn)有高一年級的學(xué)生3名,高二年級的學(xué)生5名,高三年級的學(xué)生4名,問:
(1)從中任選1人參加接待外賓的活動,有多少種不同的選法?
(2)從3個年級的學(xué)生中各選1人參加接待外賓的活動,有多少種不同的選法?

查看答案和解析>>

同步練習(xí)冊答案