1.已知向量$\overrightarrow{a}$=(12,-5),向量$\overrightarrow$與$\overrightarrow{a}$方向相反,且$\overrightarrow$=λ$\overrightarrow{a}$,|$\overrightarrow$|=13,則實(shí)數(shù)λ的值為( 。
A.1B.$\frac{12}{13}$C.-1D.-$\frac{5}{13}$

分析 求出$\overrightarrow$,利用|$\overrightarrow$|=13,求解即可得答案.

解答 解:向量$\overrightarrow{a}$=(12,-5),向量$\overrightarrow$與$\overrightarrow{a}$方向相反,且$\overrightarrow$=λ$\overrightarrow{a}$=(12λ,-5λ),λ<0,|$\overrightarrow$|=13,
可得:$\sqrt{(12λ)^{2}+(-5λ)^{2}}=13$,解得λ=-1.
故選:C.

點(diǎn)評(píng) 本題考查向量共線向量定理的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.直線$\left\{\begin{array}{l}{x=1+tsin70°}\\{y=2+tcos70°}\end{array}\right.$(t為參數(shù))的傾斜角為( 。
A.70°B.20°C.160°D.110°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知拋物線y2=ax(a≠0)的準(zhǔn)線經(jīng)過(guò)點(diǎn)(1,-1),則該拋物線焦點(diǎn)坐標(biāo)為( 。
A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知a≥1,f(x)=-sinxcosx+a(sinx+cosx)-1.
(1)求當(dāng)a=1時(shí),f(x)的值域;
(2)若函數(shù)f(x)在[0,π]內(nèi)有且只有一個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知向量$\overrightarrow a=({-4,2})$,$\overrightarrow b=({1,3})$,則$|{\overrightarrow a-\overrightarrow b}|$=$\sqrt{26}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=x+$\frac{a}{x}$+b(a•b≠0)的圖象在點(diǎn)M(-1,f(-1))處的切線方程為x+y+3=0.求:
(1)函數(shù)f(x)的解析式;
(2)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知a,b,c為正數(shù),且滿足a+2b+3c=1,則$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$的最小值為( 。
A.7B.8C.9D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知x+y=3,x,y∈R+,若$\frac{1}{x}+\frac{m}{y}(m>0)$的最小值為3,則m等于( 。
A.2B.$2\sqrt{2}$C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)f(x)=sinxcosx-$\sqrt{3}$cos2x的單調(diào)遞減區(qū)間為[$\frac{5π}{12}$+kπ,$\frac{11π}{12}$+kπ],(k∈Z).

查看答案和解析>>

同步練習(xí)冊(cè)答案