【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,相交于兩點(diǎn)

1當(dāng)時(shí),判斷直線與曲線的位置關(guān)系,并說(shuō)明理由;

2當(dāng)變化時(shí),求弦的中點(diǎn)的普通方程,并說(shuō)明它是什么曲線

【答案】1相離;2,為一段圓弧

【解析】

試題分析:1先分別求出直線與曲線的普通方程, 判斷圓心到直線的距離與圓的半徑之間的大小,得出結(jié)論;2經(jīng)分析得到,故點(diǎn)的中點(diǎn)的距離為定值1,得到點(diǎn)的軌跡方程,注意范圍

試題解析:解:1當(dāng)時(shí),將直線的參數(shù)方程化為普通方程為

曲線,則圓的圓心,半徑,

則圓心到直線的距離,則直線與曲線的位置關(guān)系為相離

2由直線的方程可知,直線恒過(guò)定點(diǎn),弦的中點(diǎn)滿足,故點(diǎn)的中點(diǎn)的距離為定值1,當(dāng)直線與圓相切時(shí),切點(diǎn)分別記為,

則點(diǎn)的普通方程為,為一段圓弧

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為坐標(biāo)原點(diǎn),已知橢圓的離心率為,拋物線的準(zhǔn)線方程為

1求橢圓和拋物線的方程;

2設(shè)過(guò)定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),若在以為直徑的圓的外部,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知yf(x)是定義在R上的奇函數(shù)x<0時(shí),f(x)12x.

(1)求函數(shù)f(x)的解析式;

(2)畫(huà)出函數(shù)f(x)的圖像;

(3)寫(xiě)出函數(shù)f(x)的單調(diào)區(qū)間及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:數(shù)列對(duì)一切正整數(shù)均滿足,稱數(shù)列凸數(shù)列,以下關(guān)于凸數(shù)列的說(shuō)法:

等差數(shù)列一定是凸數(shù)列;

首項(xiàng),公比的等比數(shù)列一定是凸數(shù)列;

若數(shù)列為凸數(shù)列,則數(shù)列是單調(diào)遞增數(shù)列;

若數(shù)列為凸數(shù)列,則下標(biāo)成等差數(shù)列的項(xiàng)構(gòu)成的子數(shù)列也為凸數(shù)列

其中正確說(shuō)法的序號(hào)是_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1,求的極值和單調(diào)區(qū)間;

2若在區(qū)間上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為弘揚(yáng)民族古典文化,學(xué)校舉行古詩(shī)詞知識(shí)競(jìng)賽,某輪比賽由節(jié)目主持人隨機(jī)從題庫(kù)中抽取題目讓選手搶答,回答正確給改選手記正10分,否則記負(fù)10分根據(jù)以往統(tǒng)計(jì),某參賽選手能答對(duì)每一個(gè)問(wèn)題的概率為;現(xiàn)記該選手在回答完個(gè)問(wèn)題后的總得分為

1的概率;

2,求的分布列,并計(jì)算數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題中,假命題是_________ (填序號(hào)).

①經(jīng)過(guò)定點(diǎn)P(x0y0)的直線不一定都可以用方程yy0k(xx0)表示;

②經(jīng)過(guò)兩個(gè)不同的點(diǎn)P1(x1,y1)、P2(x2,y2)的直線都可以用

方程(yy1)(x2x1)=(xx1)(y2y1)來(lái)表示;

③與兩條坐標(biāo)軸都相交的直線不一定可以用方程表示;

④經(jīng)過(guò)點(diǎn)Q(0,b)的直線都可以表示為ykxb.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,點(diǎn)為拋物線上一點(diǎn).

(1)求的方程;

(2)若點(diǎn)上,過(guò)的兩弦,若,求證: 直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

I)討論函數(shù)的單調(diào)性;

II)若,證明:對(duì)任意,總有.

查看答案和解析>>

同步練習(xí)冊(cè)答案